Upper bounds on the Laplacian spread of graphs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/15058 |
Resumo: | The Laplacian spread of a graph $G$ is defined as the difference between the largest and the second smallest eigenvalue of the Laplacian matrix of $G$. In this work, an upper bound for this graph invariant, that depends on first Zagreb index, is given. Moreover, another upper bound is obtained and expressed as a function of the nonzero coefficients of the Laplacian characteristic polynomial of a graph. |
id |
RCAP_aff60454c6599e009ed319abfec7c420 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15058 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Upper bounds on the Laplacian spread of graphsGraphsLaplacian MatrixMatrix spreadLaplacian SpreadThe Laplacian spread of a graph $G$ is defined as the difference between the largest and the second smallest eigenvalue of the Laplacian matrix of $G$. In this work, an upper bound for this graph invariant, that depends on first Zagreb index, is given. Moreover, another upper bound is obtained and expressed as a function of the nonzero coefficients of the Laplacian characteristic polynomial of a graph.Elsevier2018-07-20T14:00:51Z2016-03-01T00:00:00Z2016-03-012017-03-01T10:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15058eng0024-379510.1016/j.laa.2015.11.010Andrade, EnideGomes, HelenaRobbiano, MariaRodrigues, Jonnathaninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:27:39Zoai:ria.ua.pt:10773/15058Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:27.420988Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Upper bounds on the Laplacian spread of graphs |
title |
Upper bounds on the Laplacian spread of graphs |
spellingShingle |
Upper bounds on the Laplacian spread of graphs Andrade, Enide Graphs Laplacian Matrix Matrix spread Laplacian Spread |
title_short |
Upper bounds on the Laplacian spread of graphs |
title_full |
Upper bounds on the Laplacian spread of graphs |
title_fullStr |
Upper bounds on the Laplacian spread of graphs |
title_full_unstemmed |
Upper bounds on the Laplacian spread of graphs |
title_sort |
Upper bounds on the Laplacian spread of graphs |
author |
Andrade, Enide |
author_facet |
Andrade, Enide Gomes, Helena Robbiano, Maria Rodrigues, Jonnathan |
author_role |
author |
author2 |
Gomes, Helena Robbiano, Maria Rodrigues, Jonnathan |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Andrade, Enide Gomes, Helena Robbiano, Maria Rodrigues, Jonnathan |
dc.subject.por.fl_str_mv |
Graphs Laplacian Matrix Matrix spread Laplacian Spread |
topic |
Graphs Laplacian Matrix Matrix spread Laplacian Spread |
description |
The Laplacian spread of a graph $G$ is defined as the difference between the largest and the second smallest eigenvalue of the Laplacian matrix of $G$. In this work, an upper bound for this graph invariant, that depends on first Zagreb index, is given. Moreover, another upper bound is obtained and expressed as a function of the nonzero coefficients of the Laplacian characteristic polynomial of a graph. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03-01T00:00:00Z 2016-03-01 2017-03-01T10:00:00Z 2018-07-20T14:00:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15058 |
url |
http://hdl.handle.net/10773/15058 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0024-3795 10.1016/j.laa.2015.11.010 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137554565431296 |