Forecasting Demand in the Pharmaceutical Industry Using Machine Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/159901 |
Resumo: | Internship Report presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Data Science for Marketing |
id |
RCAP_81f2eee07a4804e0d2c1390f930cc7e3 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/159901 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Forecasting Demand in the Pharmaceutical Industry Using Machine LearningDemand ForecastingPharmaceutical SalesMachine LearningSDG 3 - Good health and well-beingSDG 4 - Quality educationSDG 8 - Decent work and economic growthSDG 9 - Industry, innovation and infrastructureSDG 12 - Responsible production and consumptionDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoInternship Report presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Data Science for MarketingThis study delves into the exploitation of three machine learning models, namely the Extreme Gradient Boosting (XGBoost), the Long Short-Term Memory (LSTM), and the novel Prophet algorithm, to surpass the challenge of demand forecast within the pharmaceutical industry. Following the CRISP-DM framework, we enabled accurate sales forecasting by studying, treating, transforming, and training a dataset containing historical sales data from a major Portuguese pharmaceutical company. Our findings align with the literature, underlying the robustness of the XGBoost and the inefficacy of the LSTM for the delineated task, considering the singularities of the provided data. Furthermore, this research highlights the potential of the Prophet for both its effectiveness and efficiency. This endeavor allowed us to reinforce the literature’s conviction of the need for product-specific forecasting, showcasing that no single model achieves the best accuracy for all drugs.Gonçalves, Rui Alexandre HenriquesRUNAscensão, João Aires Lancastre de Sousa Cabral de2023-11-13T18:18:54Z2023-10-242023-10-24T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/159901TID:203385853enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:42:24Zoai:run.unl.pt:10362/159901Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:45.954619Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Forecasting Demand in the Pharmaceutical Industry Using Machine Learning |
title |
Forecasting Demand in the Pharmaceutical Industry Using Machine Learning |
spellingShingle |
Forecasting Demand in the Pharmaceutical Industry Using Machine Learning Ascensão, João Aires Lancastre de Sousa Cabral de Demand Forecasting Pharmaceutical Sales Machine Learning SDG 3 - Good health and well-being SDG 4 - Quality education SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure SDG 12 - Responsible production and consumption Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Forecasting Demand in the Pharmaceutical Industry Using Machine Learning |
title_full |
Forecasting Demand in the Pharmaceutical Industry Using Machine Learning |
title_fullStr |
Forecasting Demand in the Pharmaceutical Industry Using Machine Learning |
title_full_unstemmed |
Forecasting Demand in the Pharmaceutical Industry Using Machine Learning |
title_sort |
Forecasting Demand in the Pharmaceutical Industry Using Machine Learning |
author |
Ascensão, João Aires Lancastre de Sousa Cabral de |
author_facet |
Ascensão, João Aires Lancastre de Sousa Cabral de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gonçalves, Rui Alexandre Henriques RUN |
dc.contributor.author.fl_str_mv |
Ascensão, João Aires Lancastre de Sousa Cabral de |
dc.subject.por.fl_str_mv |
Demand Forecasting Pharmaceutical Sales Machine Learning SDG 3 - Good health and well-being SDG 4 - Quality education SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure SDG 12 - Responsible production and consumption Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Demand Forecasting Pharmaceutical Sales Machine Learning SDG 3 - Good health and well-being SDG 4 - Quality education SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure SDG 12 - Responsible production and consumption Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Internship Report presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Data Science for Marketing |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-13T18:18:54Z 2023-10-24 2023-10-24T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/159901 TID:203385853 |
url |
http://hdl.handle.net/10362/159901 |
identifier_str_mv |
TID:203385853 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138159574908928 |