Bounds for different spreads of line and total graphs

Detalhes bibliográficos
Autor(a) principal: Andrade, Enide
Data de Publicação: 2019
Outros Autores: Lenes, Eber, Mallea-Zepeda, Exequiel, Robbiano, María, Rodríguez Z., Jonnathan
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/26232
Resumo: In this paper we explore some results concerning the spread of the line and the total graph of a given graph. A sufficient condition for the spread of a unicyclic graph with an odd girth to be at most the spread of its line graph is presented. Additionally, we derive an upper bound for the spread of the line graph of graphs on $n$ vertices having a vertex (edge) connectivity at most a positive integer $k$. Combining techniques of interlacing of eigenvalues, we derive lower bounds for the Laplacian and signless Laplacian spread of the total graph of a connected graph. Moreover, for a regular graph, an upper and lower bound for the spread of its total graph is given.
id RCAP_879358cb546d27021715b099d99c9282
oai_identifier_str oai:ria.ua.pt:10773/26232
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Bounds for different spreads of line and total graphsMatrix SpreadGraph SpreadQ-spreadTotal GraphLine GraphConnectivityIn this paper we explore some results concerning the spread of the line and the total graph of a given graph. A sufficient condition for the spread of a unicyclic graph with an odd girth to be at most the spread of its line graph is presented. Additionally, we derive an upper bound for the spread of the line graph of graphs on $n$ vertices having a vertex (edge) connectivity at most a positive integer $k$. Combining techniques of interlacing of eigenvalues, we derive lower bounds for the Laplacian and signless Laplacian spread of the total graph of a connected graph. Moreover, for a regular graph, an upper and lower bound for the spread of its total graph is given.Elsevier2019-06-19T10:59:50Z2019-10-15T00:00:00Z2019-10-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/26232eng0024-379510.1016/j.laa.2019.06.007Andrade, EnideLenes, EberMallea-Zepeda, ExequielRobbiano, MaríaRodríguez Z., Jonnathaninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:50:46Zoai:ria.ua.pt:10773/26232Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:15.811798Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Bounds for different spreads of line and total graphs
title Bounds for different spreads of line and total graphs
spellingShingle Bounds for different spreads of line and total graphs
Andrade, Enide
Matrix Spread
Graph Spread
Q-spread
Total Graph
Line Graph
Connectivity
title_short Bounds for different spreads of line and total graphs
title_full Bounds for different spreads of line and total graphs
title_fullStr Bounds for different spreads of line and total graphs
title_full_unstemmed Bounds for different spreads of line and total graphs
title_sort Bounds for different spreads of line and total graphs
author Andrade, Enide
author_facet Andrade, Enide
Lenes, Eber
Mallea-Zepeda, Exequiel
Robbiano, María
Rodríguez Z., Jonnathan
author_role author
author2 Lenes, Eber
Mallea-Zepeda, Exequiel
Robbiano, María
Rodríguez Z., Jonnathan
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Andrade, Enide
Lenes, Eber
Mallea-Zepeda, Exequiel
Robbiano, María
Rodríguez Z., Jonnathan
dc.subject.por.fl_str_mv Matrix Spread
Graph Spread
Q-spread
Total Graph
Line Graph
Connectivity
topic Matrix Spread
Graph Spread
Q-spread
Total Graph
Line Graph
Connectivity
description In this paper we explore some results concerning the spread of the line and the total graph of a given graph. A sufficient condition for the spread of a unicyclic graph with an odd girth to be at most the spread of its line graph is presented. Additionally, we derive an upper bound for the spread of the line graph of graphs on $n$ vertices having a vertex (edge) connectivity at most a positive integer $k$. Combining techniques of interlacing of eigenvalues, we derive lower bounds for the Laplacian and signless Laplacian spread of the total graph of a connected graph. Moreover, for a regular graph, an upper and lower bound for the spread of its total graph is given.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-19T10:59:50Z
2019-10-15T00:00:00Z
2019-10-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/26232
url http://hdl.handle.net/10773/26232
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0024-3795
10.1016/j.laa.2019.06.007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137647250112512