Sentiment analysis in geo social streams by using machine learning technique
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/33797 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
id |
RCAP_88f414f4c19e11b417cebcc7b61a3f4a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/33797 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sentiment analysis in geo social streams by using machine learning techniqueGeovisualizationMachine LearningOpinion MiningSentiment AnalysisDissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesMassive amounts of sentiment rich data are generated on social media in the form of Tweets, status updates, blog post, reviews, etc. Different people and organizations are using these user generated content for decision making. Symbolic techniques or Knowledge base approaches and Machine learning techniques are two main techniques used for analysis sentiments from text. The rapid increase in the volume of sentiment rich data on the web has resulted in an increased interaction among researchers regarding sentiment analysis and opinion (Kaushik & Mishra, 2014). However, limited research has been conducted considering location as another dimension along with the sentiment rich data. In this work, we analyze the sentiments of Geotweets, tweets containing latitude and longitude coordinates, and visualize the results in the form of a map in real time. We collect tweets from Twitter using its Streaming API, filtered by English language and location (bounding box). For those tweets which don’t have geographic coordinates, we geocode them using geocoder from GeoPy. Textblob, an open source library in python was used to calculate the sentiments of Geotweets. Map visualization was implemented using Leaflet. Plugins for clusters, heat maps and real-time have been used in this visualization. The visualization gives an insight of location sentiments.Ramos Romero, José FranciscoFernandez, Oscar BelmonteHenriques, Roberto André PereiraRUNTwanabasu, Bikesh2018-04-04T16:59:34Z2018-03-022018-03-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/33797TID:201894009enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:18:33Zoai:run.unl.pt:10362/33797Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:30:04.947650Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sentiment analysis in geo social streams by using machine learning technique |
title |
Sentiment analysis in geo social streams by using machine learning technique |
spellingShingle |
Sentiment analysis in geo social streams by using machine learning technique Twanabasu, Bikesh Geovisualization Machine Learning Opinion Mining Sentiment Analysis |
title_short |
Sentiment analysis in geo social streams by using machine learning technique |
title_full |
Sentiment analysis in geo social streams by using machine learning technique |
title_fullStr |
Sentiment analysis in geo social streams by using machine learning technique |
title_full_unstemmed |
Sentiment analysis in geo social streams by using machine learning technique |
title_sort |
Sentiment analysis in geo social streams by using machine learning technique |
author |
Twanabasu, Bikesh |
author_facet |
Twanabasu, Bikesh |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ramos Romero, José Francisco Fernandez, Oscar Belmonte Henriques, Roberto André Pereira RUN |
dc.contributor.author.fl_str_mv |
Twanabasu, Bikesh |
dc.subject.por.fl_str_mv |
Geovisualization Machine Learning Opinion Mining Sentiment Analysis |
topic |
Geovisualization Machine Learning Opinion Mining Sentiment Analysis |
description |
Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-04T16:59:34Z 2018-03-02 2018-03-02T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/33797 TID:201894009 |
url |
http://hdl.handle.net/10362/33797 |
identifier_str_mv |
TID:201894009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137925208735744 |