senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task

Detalhes bibliográficos
Autor(a) principal: Saias, jose
Data de Publicação: 2013
Outros Autores: Fernandes, Hilário
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/10342
Resumo: This article describes a Sentiment Analysis (SA) system named senti.ue-en, built for participation in SemEval-2013 Task 2, a Twitter SA challenge. In both challenge subtasks we used the same supervised machine learning approach, including two classifiers in pipeline, with 22 semantic oriented features, such as polarized term presence and index, and negation presence. Our system achieved a better score on Task A (0.7413) than in the Task B (0.4785). In the first subtask, there is a better result for SMS than the obtained for the more trained type of data, the tweets.
id RCAP_c5d4883c0c1b8f4d01d233bac0588f13
oai_identifier_str oai:dspace.uevora.pt:10174/10342
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis taskopinion miningsentiment analysisNLPMachine LearningThis article describes a Sentiment Analysis (SA) system named senti.ue-en, built for participation in SemEval-2013 Task 2, a Twitter SA challenge. In both challenge subtasks we used the same supervised machine learning approach, including two classifiers in pipeline, with 22 semantic oriented features, such as polarized term presence and index, and negation presence. Our system achieved a better score on Task A (0.7413) than in the Task B (0.4785). In the first subtask, there is a better result for SMS than the obtained for the more trained type of data, the tweets.Association for Computational Linguistics2014-01-29T17:55:18Z2014-01-292013-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/10342http://hdl.handle.net/10174/10342engJosé Saias and Hilário Fernandes. senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task. In Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pages 508-512, Atlanta, Georgia, USA, June 2013. Association for Computational Linguisticshttp://aclweb.org/anthology//S/S13/S13-2084.pdfjsaias@uevora.pthilario.fernandes@cortex-intelligence.com283Saias, joseFernandes, Hilárioinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:53:03Zoai:dspace.uevora.pt:10174/10342Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:04:13.362948Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task
title senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task
spellingShingle senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task
Saias, jose
opinion mining
sentiment analysis
NLP
Machine Learning
title_short senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task
title_full senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task
title_fullStr senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task
title_full_unstemmed senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task
title_sort senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task
author Saias, jose
author_facet Saias, jose
Fernandes, Hilário
author_role author
author2 Fernandes, Hilário
author2_role author
dc.contributor.author.fl_str_mv Saias, jose
Fernandes, Hilário
dc.subject.por.fl_str_mv opinion mining
sentiment analysis
NLP
Machine Learning
topic opinion mining
sentiment analysis
NLP
Machine Learning
description This article describes a Sentiment Analysis (SA) system named senti.ue-en, built for participation in SemEval-2013 Task 2, a Twitter SA challenge. In both challenge subtasks we used the same supervised machine learning approach, including two classifiers in pipeline, with 22 semantic oriented features, such as polarized term presence and index, and negation presence. Our system achieved a better score on Task A (0.7413) than in the Task B (0.4785). In the first subtask, there is a better result for SMS than the obtained for the more trained type of data, the tweets.
publishDate 2013
dc.date.none.fl_str_mv 2013-06-01T00:00:00Z
2014-01-29T17:55:18Z
2014-01-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/10342
http://hdl.handle.net/10174/10342
url http://hdl.handle.net/10174/10342
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv José Saias and Hilário Fernandes. senti.ue-en: an approach for informally written short texts in semeval-2013 sentiment analysis task. In Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pages 508-512, Atlanta, Georgia, USA, June 2013. Association for Computational Linguistics
http://aclweb.org/anthology//S/S13/S13-2084.pdf
jsaias@uevora.pt
hilario.fernandes@cortex-intelligence.com
283
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Association for Computational Linguistics
publisher.none.fl_str_mv Association for Computational Linguistics
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136526370603008