Combining Overall and Target Oriented Sentiment Analysis over Portuguese Text from Social Media
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/14879 https://doi.org/10.14738/tmlai.33.1297 |
Resumo: | This document describes an approach to perform sentiment analysis on social media Portuguese content. In a single system, we perform polarity classification for both the overall sentiment, and target oriented sentiment. In both modes we train a Maximum Entropy classifier. The overall model is based on BoW type features, and also features derived from POS tagging and from sentiment lexicons. Target oriented analysis begins with named entity recognition, followed by the classification of sentiment polarity on these entities. This classifier model uses features dedicated to the entity mention textual zone, including negation detection, and the syntactic function of the target occurrence segment. Our experiments have achieved an accuracy of 75% for target oriented polarity classification, and 97% in overall polarity. |
id |
RCAP_26dfa5e66f91393863b3a0a5a4b5af8e |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/14879 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Combining Overall and Target Oriented Sentiment Analysis over Portuguese Text from Social MediaSentiment AnalysisNLPOpinion MiningMachine LearningText classificationThis document describes an approach to perform sentiment analysis on social media Portuguese content. In a single system, we perform polarity classification for both the overall sentiment, and target oriented sentiment. In both modes we train a Maximum Entropy classifier. The overall model is based on BoW type features, and also features derived from POS tagging and from sentiment lexicons. Target oriented analysis begins with named entity recognition, followed by the classification of sentiment polarity on these entities. This classifier model uses features dedicated to the entity mention textual zone, including negation detection, and the syntactic function of the target occurrence segment. Our experiments have achieved an accuracy of 75% for target oriented polarity classification, and 97% in overall polarity.Transactions on Machine Learning and Artificial Intelligence2015-08-11T11:25:48Z2015-08-112015-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/14879http://hdl.handle.net/10174/14879https://doi.org/10.14738/tmlai.33.1297engJosé Saias, Ruben Silva, Eduardo Oliveira, Ruben Ruiz; Combining Overall and Target Oriented Sentiment Analysis over Portuguese Text from Social Media. Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 3 June (2015); pp: 46-55jsaias@uevora.ptndndnd283Saias, JoséSilva, RubenOliveira, EduardoRuiz, Rubeninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:01:35Zoai:dspace.uevora.pt:10174/14879Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:08:04.976304Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Combining Overall and Target Oriented Sentiment Analysis over Portuguese Text from Social Media |
title |
Combining Overall and Target Oriented Sentiment Analysis over Portuguese Text from Social Media |
spellingShingle |
Combining Overall and Target Oriented Sentiment Analysis over Portuguese Text from Social Media Saias, José Sentiment Analysis NLP Opinion Mining Machine Learning Text classification |
title_short |
Combining Overall and Target Oriented Sentiment Analysis over Portuguese Text from Social Media |
title_full |
Combining Overall and Target Oriented Sentiment Analysis over Portuguese Text from Social Media |
title_fullStr |
Combining Overall and Target Oriented Sentiment Analysis over Portuguese Text from Social Media |
title_full_unstemmed |
Combining Overall and Target Oriented Sentiment Analysis over Portuguese Text from Social Media |
title_sort |
Combining Overall and Target Oriented Sentiment Analysis over Portuguese Text from Social Media |
author |
Saias, José |
author_facet |
Saias, José Silva, Ruben Oliveira, Eduardo Ruiz, Ruben |
author_role |
author |
author2 |
Silva, Ruben Oliveira, Eduardo Ruiz, Ruben |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Saias, José Silva, Ruben Oliveira, Eduardo Ruiz, Ruben |
dc.subject.por.fl_str_mv |
Sentiment Analysis NLP Opinion Mining Machine Learning Text classification |
topic |
Sentiment Analysis NLP Opinion Mining Machine Learning Text classification |
description |
This document describes an approach to perform sentiment analysis on social media Portuguese content. In a single system, we perform polarity classification for both the overall sentiment, and target oriented sentiment. In both modes we train a Maximum Entropy classifier. The overall model is based on BoW type features, and also features derived from POS tagging and from sentiment lexicons. Target oriented analysis begins with named entity recognition, followed by the classification of sentiment polarity on these entities. This classifier model uses features dedicated to the entity mention textual zone, including negation detection, and the syntactic function of the target occurrence segment. Our experiments have achieved an accuracy of 75% for target oriented polarity classification, and 97% in overall polarity. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08-11T11:25:48Z 2015-08-11 2015-06-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/14879 http://hdl.handle.net/10174/14879 https://doi.org/10.14738/tmlai.33.1297 |
url |
http://hdl.handle.net/10174/14879 https://doi.org/10.14738/tmlai.33.1297 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
José Saias, Ruben Silva, Eduardo Oliveira, Ruben Ruiz; Combining Overall and Target Oriented Sentiment Analysis over Portuguese Text from Social Media. Transactions on Machine Learning and Artificial Intelligence, Volume 3 No 3 June (2015); pp: 46-55 jsaias@uevora.pt nd nd nd 283 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Transactions on Machine Learning and Artificial Intelligence |
publisher.none.fl_str_mv |
Transactions on Machine Learning and Artificial Intelligence |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817554194039570432 |