Embedded real-time speed limit sign recognition using image processing and machine learning techniques

Detalhes bibliográficos
Autor(a) principal: Samuel L. Gomes
Data de Publicação: 2017
Outros Autores: Elizângela de S. Rebouças, Edson Cavalcanti Neto, João P. Papa, Victor H. C. Albuquerque, P. P. Rebouças Filho, João Manuel R. S. Tavares
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/110466
Resumo: The number of traffic accidents in Brazil has reached alarming levels and is currently one of the leading causes of death in the country. With the number of vehicles on the roads increasing rapidly, these problems will tend to worsen. Consequently, huge investments in resources to increase road safety will be required. The vertical R-19 system for optical character recognition of regulatory traffic signs (maximum speed limits) according to Brazilian Standards developed in this work uses a camera positioned at the front of the vehicle, facing forward. This is so that images of traffic signs can be captured, enabling the use of image processing and analysis techniques for sign detection. This paper proposes the detection and recognition of speed limit signs based on a cascade of boosted classifiers working with haar-like features. The recognition of the sign detected is achieved based on the optimum-path forest classifier (OPF), support vector machines (SVM), multilayer perceptron, k-nearest neighbor (kNN), extreme learning machine, least mean squares, and least squares machine learning techniques. The SVM, OPF and kNN classifiers had average accuracies higher than 99.5 %; the OPF classifier with a linear kernel took an average time of 87 mu s to recognize a sign, while kNN took 11,721 ls and SVM 12,595 ls. This sign detection approach found and recognized successfully 11,320 road signs from a set of 12,520 images, leading to an overall accuracy of 90.41 %. Analyzing the system globally recognition accuracy was 89.19 %, as 11,167 road signs from a database with 12,520 signs were correctly recognized. The processing speed of the embedded system varied between 20 and 30 frames per second. Therefore, based on these results, the proposed system can be considered a promising tool with high commercial potential.
id RCAP_92b7025c8e41da4b69f74956dc4c5504
oai_identifier_str oai:repositorio-aberto.up.pt:10216/110466
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Embedded real-time speed limit sign recognition using image processing and machine learning techniquesCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesThe number of traffic accidents in Brazil has reached alarming levels and is currently one of the leading causes of death in the country. With the number of vehicles on the roads increasing rapidly, these problems will tend to worsen. Consequently, huge investments in resources to increase road safety will be required. The vertical R-19 system for optical character recognition of regulatory traffic signs (maximum speed limits) according to Brazilian Standards developed in this work uses a camera positioned at the front of the vehicle, facing forward. This is so that images of traffic signs can be captured, enabling the use of image processing and analysis techniques for sign detection. This paper proposes the detection and recognition of speed limit signs based on a cascade of boosted classifiers working with haar-like features. The recognition of the sign detected is achieved based on the optimum-path forest classifier (OPF), support vector machines (SVM), multilayer perceptron, k-nearest neighbor (kNN), extreme learning machine, least mean squares, and least squares machine learning techniques. The SVM, OPF and kNN classifiers had average accuracies higher than 99.5 %; the OPF classifier with a linear kernel took an average time of 87 mu s to recognize a sign, while kNN took 11,721 ls and SVM 12,595 ls. This sign detection approach found and recognized successfully 11,320 road signs from a set of 12,520 images, leading to an overall accuracy of 90.41 %. Analyzing the system globally recognition accuracy was 89.19 %, as 11,167 road signs from a database with 12,520 signs were correctly recognized. The processing speed of the embedded system varied between 20 and 30 frames per second. Therefore, based on these results, the proposed system can be considered a promising tool with high commercial potential.2017-122017-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfimage/pnghttps://hdl.handle.net/10216/110466eng0941-064310.1007/s00521-016-2388-3Samuel L. GomesElizângela de S. RebouçasEdson Cavalcanti NetoJoão P. PapaVictor H. C. AlbuquerqueP. P. Rebouças FilhoJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T12:56:47Zoai:repositorio-aberto.up.pt:10216/110466Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:30:09.576867Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Embedded real-time speed limit sign recognition using image processing and machine learning techniques
title Embedded real-time speed limit sign recognition using image processing and machine learning techniques
spellingShingle Embedded real-time speed limit sign recognition using image processing and machine learning techniques
Samuel L. Gomes
Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
title_short Embedded real-time speed limit sign recognition using image processing and machine learning techniques
title_full Embedded real-time speed limit sign recognition using image processing and machine learning techniques
title_fullStr Embedded real-time speed limit sign recognition using image processing and machine learning techniques
title_full_unstemmed Embedded real-time speed limit sign recognition using image processing and machine learning techniques
title_sort Embedded real-time speed limit sign recognition using image processing and machine learning techniques
author Samuel L. Gomes
author_facet Samuel L. Gomes
Elizângela de S. Rebouças
Edson Cavalcanti Neto
João P. Papa
Victor H. C. Albuquerque
P. P. Rebouças Filho
João Manuel R. S. Tavares
author_role author
author2 Elizângela de S. Rebouças
Edson Cavalcanti Neto
João P. Papa
Victor H. C. Albuquerque
P. P. Rebouças Filho
João Manuel R. S. Tavares
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Samuel L. Gomes
Elizângela de S. Rebouças
Edson Cavalcanti Neto
João P. Papa
Victor H. C. Albuquerque
P. P. Rebouças Filho
João Manuel R. S. Tavares
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
topic Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
description The number of traffic accidents in Brazil has reached alarming levels and is currently one of the leading causes of death in the country. With the number of vehicles on the roads increasing rapidly, these problems will tend to worsen. Consequently, huge investments in resources to increase road safety will be required. The vertical R-19 system for optical character recognition of regulatory traffic signs (maximum speed limits) according to Brazilian Standards developed in this work uses a camera positioned at the front of the vehicle, facing forward. This is so that images of traffic signs can be captured, enabling the use of image processing and analysis techniques for sign detection. This paper proposes the detection and recognition of speed limit signs based on a cascade of boosted classifiers working with haar-like features. The recognition of the sign detected is achieved based on the optimum-path forest classifier (OPF), support vector machines (SVM), multilayer perceptron, k-nearest neighbor (kNN), extreme learning machine, least mean squares, and least squares machine learning techniques. The SVM, OPF and kNN classifiers had average accuracies higher than 99.5 %; the OPF classifier with a linear kernel took an average time of 87 mu s to recognize a sign, while kNN took 11,721 ls and SVM 12,595 ls. This sign detection approach found and recognized successfully 11,320 road signs from a set of 12,520 images, leading to an overall accuracy of 90.41 %. Analyzing the system globally recognition accuracy was 89.19 %, as 11,167 road signs from a database with 12,520 signs were correctly recognized. The processing speed of the embedded system varied between 20 and 30 frames per second. Therefore, based on these results, the proposed system can be considered a promising tool with high commercial potential.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
2017-12-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/110466
url https://hdl.handle.net/10216/110466
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0941-0643
10.1007/s00521-016-2388-3
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
image/png
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135609181175808