Photoacoustic transfection of DNA encoding GFP
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
DOI: | 10.1038/s41598-018-37759-1 |
Texto Completo: | http://hdl.handle.net/10316/107380 https://doi.org/10.1038/s41598-018-37759-1 |
Resumo: | Photoacoustic transfection consists in the use of photoacoustic waves, generated in the thermoelastic expansion of a confined material absorbing a short pulse of a laser, to produce temporary mechanical deformations of the cell membrane and facilitate the delivery of plasmid DNA into cells. We show that high stress gradients, produced when picosecond laser pulses with a fluence of 100 mJ/cm2 are absorbed by piezophotonic materials, enable transfection of a plasmid DNA encoding Green Fluorescent Protein (gWizGFP, 3.74 MDa) in COS-7 monkey fibroblast cells with an efficiency of 5% at 20 °C, in 10 minutes. We did not observe significant cytotoxicity under these conditions. Photoacoustic transfection is scalable, affordable, enables nuclear localization and the dosage is easily controlled by the laser parameters. |
id |
RCAP_89ace9428d0dd8237140185d0f044e18 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/107380 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Photoacoustic transfection of DNA encoding GFPAnimalsCOS CellsCell MembraneChlorocebus aethiopsGreen Fluorescent ProteinsHumansPhotoacoustic TechniquesPlasmidsTransfectionPhotoacoustic transfection consists in the use of photoacoustic waves, generated in the thermoelastic expansion of a confined material absorbing a short pulse of a laser, to produce temporary mechanical deformations of the cell membrane and facilitate the delivery of plasmid DNA into cells. We show that high stress gradients, produced when picosecond laser pulses with a fluence of 100 mJ/cm2 are absorbed by piezophotonic materials, enable transfection of a plasmid DNA encoding Green Fluorescent Protein (gWizGFP, 3.74 MDa) in COS-7 monkey fibroblast cells with an efficiency of 5% at 20 °C, in 10 minutes. We did not observe significant cytotoxicity under these conditions. Photoacoustic transfection is scalable, affordable, enables nuclear localization and the dosage is easily controlled by the laser parameters.Springer Nature2019-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/107380http://hdl.handle.net/10316/107380https://doi.org/10.1038/s41598-018-37759-1eng2045-2322Silva, Alexandre D.Serpa, CarlosArnaut, Luís G.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-06T11:21:52Zoai:estudogeral.uc.pt:10316/107380Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:23:44.588902Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Photoacoustic transfection of DNA encoding GFP |
title |
Photoacoustic transfection of DNA encoding GFP |
spellingShingle |
Photoacoustic transfection of DNA encoding GFP Photoacoustic transfection of DNA encoding GFP Silva, Alexandre D. Animals COS Cells Cell Membrane Chlorocebus aethiops Green Fluorescent Proteins Humans Photoacoustic Techniques Plasmids Transfection Silva, Alexandre D. Animals COS Cells Cell Membrane Chlorocebus aethiops Green Fluorescent Proteins Humans Photoacoustic Techniques Plasmids Transfection |
title_short |
Photoacoustic transfection of DNA encoding GFP |
title_full |
Photoacoustic transfection of DNA encoding GFP |
title_fullStr |
Photoacoustic transfection of DNA encoding GFP Photoacoustic transfection of DNA encoding GFP |
title_full_unstemmed |
Photoacoustic transfection of DNA encoding GFP Photoacoustic transfection of DNA encoding GFP |
title_sort |
Photoacoustic transfection of DNA encoding GFP |
author |
Silva, Alexandre D. |
author_facet |
Silva, Alexandre D. Silva, Alexandre D. Serpa, Carlos Arnaut, Luís G. Serpa, Carlos Arnaut, Luís G. |
author_role |
author |
author2 |
Serpa, Carlos Arnaut, Luís G. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Silva, Alexandre D. Serpa, Carlos Arnaut, Luís G. |
dc.subject.por.fl_str_mv |
Animals COS Cells Cell Membrane Chlorocebus aethiops Green Fluorescent Proteins Humans Photoacoustic Techniques Plasmids Transfection |
topic |
Animals COS Cells Cell Membrane Chlorocebus aethiops Green Fluorescent Proteins Humans Photoacoustic Techniques Plasmids Transfection |
description |
Photoacoustic transfection consists in the use of photoacoustic waves, generated in the thermoelastic expansion of a confined material absorbing a short pulse of a laser, to produce temporary mechanical deformations of the cell membrane and facilitate the delivery of plasmid DNA into cells. We show that high stress gradients, produced when picosecond laser pulses with a fluence of 100 mJ/cm2 are absorbed by piezophotonic materials, enable transfection of a plasmid DNA encoding Green Fluorescent Protein (gWizGFP, 3.74 MDa) in COS-7 monkey fibroblast cells with an efficiency of 5% at 20 °C, in 10 minutes. We did not observe significant cytotoxicity under these conditions. Photoacoustic transfection is scalable, affordable, enables nuclear localization and the dosage is easily controlled by the laser parameters. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/107380 http://hdl.handle.net/10316/107380 https://doi.org/10.1038/s41598-018-37759-1 |
url |
http://hdl.handle.net/10316/107380 https://doi.org/10.1038/s41598-018-37759-1 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2045-2322 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1822181907103744000 |
dc.identifier.doi.none.fl_str_mv |
10.1038/s41598-018-37759-1 |