A novel binary classification approach based on geometric semantic genetic programming
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/129893 |
Resumo: | Bakurov, I., Castelli, M., Fontanella, F., Scotto Di Freca, A., & Vanneschi, L. (2022). A novel binary classification approach based on geometric semantic genetic programming. Swarm and Evolutionary Computation, 69(March), 1-12. [101028]. https://doi.org/10.1016/j.swevo.2021.101028 ------Funding Information: This work was supported by national funds through the FCT (Fundação para a Ciência e a Tecnologia) by the projects GADgET (DSAIPA/DS/0022/2018), BINDER (PTDC/CCIINF/29168/2017), and AICE (DSAIPA/DS/0113/2019). Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410). |
id |
RCAP_8aa01cd27faa963f084159e4fe2729f4 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/129893 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A novel binary classification approach based on geometric semantic genetic programmingBinary classificationGeometric semantic genetic programmingComputer Science(all)Mathematics(all)Bakurov, I., Castelli, M., Fontanella, F., Scotto Di Freca, A., & Vanneschi, L. (2022). A novel binary classification approach based on geometric semantic genetic programming. Swarm and Evolutionary Computation, 69(March), 1-12. [101028]. https://doi.org/10.1016/j.swevo.2021.101028 ------Funding Information: This work was supported by national funds through the FCT (Fundação para a Ciência e a Tecnologia) by the projects GADgET (DSAIPA/DS/0022/2018), BINDER (PTDC/CCIINF/29168/2017), and AICE (DSAIPA/DS/0113/2019). Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410).Geometric semantic genetic programming (GSGP) is a recent variant of genetic programming. GSGP allows the landscape of any supervised regression problem to be transformed into a unimodal error surface, thus it has been applied only to this kind of problem. In a previous paper, we presented a novel variant of GSGP for binary classification problems that, taking inspiration from perceptron neural networks, uses a logistic-based activation function to constrain the output value of a GSGP tree in the interval [0,1]. This simple approach allowed us to use the standard RMSE function to evaluate the train classification error on binary classification problems and, consequently, to preserve the intrinsic properties of the geometric semantic operators. The results encouraged us to investigate this approach further. To this aim, in this paper, we present the results from 18 test problems, which we compared with those achieved by eleven well-known and widely classification schemes. We also studied how the parameter settings affect the classification performance and the use of the -score function to deal with imbalanced data. The results confirmed the effectiveness of the proposed approach.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNBakurov, IllyaCastelli, MauroFontanella, F.Scotto Di Freca, A.Vanneschi, Leonardo2024-01-24T01:31:43Z2022-03-012022-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12application/pdfhttp://hdl.handle.net/10362/129893eng2210-6502PURE: 35605518https://doi.org/10.1016/j.swevo.2021.101028info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:08:51Zoai:run.unl.pt:10362/129893Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:46:40.501069Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A novel binary classification approach based on geometric semantic genetic programming |
title |
A novel binary classification approach based on geometric semantic genetic programming |
spellingShingle |
A novel binary classification approach based on geometric semantic genetic programming Bakurov, Illya Binary classification Geometric semantic genetic programming Computer Science(all) Mathematics(all) |
title_short |
A novel binary classification approach based on geometric semantic genetic programming |
title_full |
A novel binary classification approach based on geometric semantic genetic programming |
title_fullStr |
A novel binary classification approach based on geometric semantic genetic programming |
title_full_unstemmed |
A novel binary classification approach based on geometric semantic genetic programming |
title_sort |
A novel binary classification approach based on geometric semantic genetic programming |
author |
Bakurov, Illya |
author_facet |
Bakurov, Illya Castelli, Mauro Fontanella, F. Scotto Di Freca, A. Vanneschi, Leonardo |
author_role |
author |
author2 |
Castelli, Mauro Fontanella, F. Scotto Di Freca, A. Vanneschi, Leonardo |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Bakurov, Illya Castelli, Mauro Fontanella, F. Scotto Di Freca, A. Vanneschi, Leonardo |
dc.subject.por.fl_str_mv |
Binary classification Geometric semantic genetic programming Computer Science(all) Mathematics(all) |
topic |
Binary classification Geometric semantic genetic programming Computer Science(all) Mathematics(all) |
description |
Bakurov, I., Castelli, M., Fontanella, F., Scotto Di Freca, A., & Vanneschi, L. (2022). A novel binary classification approach based on geometric semantic genetic programming. Swarm and Evolutionary Computation, 69(March), 1-12. [101028]. https://doi.org/10.1016/j.swevo.2021.101028 ------Funding Information: This work was supported by national funds through the FCT (Fundação para a Ciência e a Tecnologia) by the projects GADgET (DSAIPA/DS/0022/2018), BINDER (PTDC/CCIINF/29168/2017), and AICE (DSAIPA/DS/0113/2019). Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-01 2022-03-01T00:00:00Z 2024-01-24T01:31:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/129893 |
url |
http://hdl.handle.net/10362/129893 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2210-6502 PURE: 35605518 https://doi.org/10.1016/j.swevo.2021.101028 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
12 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138070063218688 |