Forecasting models for Portugal’s inbound tourism

Detalhes bibliográficos
Autor(a) principal: Dias, Nuno Miguel de Castro de Amorim Oliveira
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/30720
Resumo: In Portugal, the tourism sector has a considerable weight in the GDP and, as Small and Medium Enterprises (SMEs) were the most impacted by the pandemic, any contribution to help them to recover is welcome. It is in this context that the European RESETTING project has been setup, aiming to provide tools that can help these SMEs. This research work fits into the purpose, by studying and providing tourism forecasting models so Portuguese SMEs can use them and adjust their products and services to tourism demand. After analysing the research field related to tourism forecasting, we have figured out the most popular algorithms and what data should be used. This research study follows a well-known methodology to deal with data – CRISP-DM. Hence, we collected and prepared the data of interest, then we analysed it so we could better understand it. Finally, we have created two classes of forecasting models: baseline and deep learning forecasting models. The more complex deep learning models were based on Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. From the experiments carried out we concluded that both deep learning models work well with data of daily frequency and were outperforming the baseline models. However, it did not work that well in the case of monthly data, when comparing with the baseline models. In the end, the models provided can help SMEs to obtain tourism demand predictions, both for the near-term – nowcasting – and the medium-term horizons.
id RCAP_8b55b7a0b89e54b9dd02f11a2b012a5f
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/30720
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Forecasting models for Portugal’s inbound tourismTourism forecastingPortugal’s tourismForecasting modelsPrevisão do turismoTurismo de PortugalModelos de previsãoIn Portugal, the tourism sector has a considerable weight in the GDP and, as Small and Medium Enterprises (SMEs) were the most impacted by the pandemic, any contribution to help them to recover is welcome. It is in this context that the European RESETTING project has been setup, aiming to provide tools that can help these SMEs. This research work fits into the purpose, by studying and providing tourism forecasting models so Portuguese SMEs can use them and adjust their products and services to tourism demand. After analysing the research field related to tourism forecasting, we have figured out the most popular algorithms and what data should be used. This research study follows a well-known methodology to deal with data – CRISP-DM. Hence, we collected and prepared the data of interest, then we analysed it so we could better understand it. Finally, we have created two classes of forecasting models: baseline and deep learning forecasting models. The more complex deep learning models were based on Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. From the experiments carried out we concluded that both deep learning models work well with data of daily frequency and were outperforming the baseline models. However, it did not work that well in the case of monthly data, when comparing with the baseline models. In the end, the models provided can help SMEs to obtain tourism demand predictions, both for the near-term – nowcasting – and the medium-term horizons.Em Portugal, o mercado do turismo tem um peso considerável no PIB e, uma vez que as Pequenas e Médias Empresas (PMEs) do turismo foram as mais impactadas pela pandemia, qualquer contributo para a sua recuperação é bem-vindo. É neste contexto que surge o projeto europeu RESETTING, o qual visa disponibilizar ferramentas que possam auxiliar estas PMEs. Este trabalho de investigação enquadra-se neste propósito, estudando e disponibilizando modelos de previsão para o sector do turismo, de modo a que as PMEs portuguesas possam utilizar e, assim, ajustar os respetivos produtos e serviços à procura. Após estudo da área de investigação relacionada com modelos de previsão do turismo, constatámos quais seriam os algoritmos mais utilizados e que dados deveriam ser utilizados. Este trabalho de investigação segue uma metodologia para manipulação de dados – CRISP-DM. Assim, começamos por obter, preparar os dados de interesse e analisar os mesmos para os entender melhor. Como resultado, construimos duas classes de modelos de previsão: modelos de referência e modelos de deep learning. Os modelos mais complexos de deep learning são baseados nos algoritmos Long Short-Term Memory (LSTM) e Gated Recurrent Unit (GRU). Finalmente, concluimos que ambos os modelos de deep learning funcionam muito bem com dados de frequência diária, superando os modelos de referência. No entanto, não funcionaram tão bem para dados de frequência mensal quando comparados com os modelos de referência. Concluindo, os modelos apresentados podem auxiliar as PMEs a obter previsões sobre procura de turismo, quer no horizonte de curto-prazo, quer no horizonte de médio-prazo.2024-01-31T10:45:26Z2023-12-21T00:00:00Z2023-12-212023-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/30720TID:203466519engDias, Nuno Miguel de Castro de Amorim Oliveirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-04T01:20:28Zoai:repositorio.iscte-iul.pt:10071/30720Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:08:03.836993Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Forecasting models for Portugal’s inbound tourism
title Forecasting models for Portugal’s inbound tourism
spellingShingle Forecasting models for Portugal’s inbound tourism
Dias, Nuno Miguel de Castro de Amorim Oliveira
Tourism forecasting
Portugal’s tourism
Forecasting models
Previsão do turismo
Turismo de Portugal
Modelos de previsão
title_short Forecasting models for Portugal’s inbound tourism
title_full Forecasting models for Portugal’s inbound tourism
title_fullStr Forecasting models for Portugal’s inbound tourism
title_full_unstemmed Forecasting models for Portugal’s inbound tourism
title_sort Forecasting models for Portugal’s inbound tourism
author Dias, Nuno Miguel de Castro de Amorim Oliveira
author_facet Dias, Nuno Miguel de Castro de Amorim Oliveira
author_role author
dc.contributor.author.fl_str_mv Dias, Nuno Miguel de Castro de Amorim Oliveira
dc.subject.por.fl_str_mv Tourism forecasting
Portugal’s tourism
Forecasting models
Previsão do turismo
Turismo de Portugal
Modelos de previsão
topic Tourism forecasting
Portugal’s tourism
Forecasting models
Previsão do turismo
Turismo de Portugal
Modelos de previsão
description In Portugal, the tourism sector has a considerable weight in the GDP and, as Small and Medium Enterprises (SMEs) were the most impacted by the pandemic, any contribution to help them to recover is welcome. It is in this context that the European RESETTING project has been setup, aiming to provide tools that can help these SMEs. This research work fits into the purpose, by studying and providing tourism forecasting models so Portuguese SMEs can use them and adjust their products and services to tourism demand. After analysing the research field related to tourism forecasting, we have figured out the most popular algorithms and what data should be used. This research study follows a well-known methodology to deal with data – CRISP-DM. Hence, we collected and prepared the data of interest, then we analysed it so we could better understand it. Finally, we have created two classes of forecasting models: baseline and deep learning forecasting models. The more complex deep learning models were based on Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. From the experiments carried out we concluded that both deep learning models work well with data of daily frequency and were outperforming the baseline models. However, it did not work that well in the case of monthly data, when comparing with the baseline models. In the end, the models provided can help SMEs to obtain tourism demand predictions, both for the near-term – nowcasting – and the medium-term horizons.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-21T00:00:00Z
2023-12-21
2023-10
2024-01-31T10:45:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/30720
TID:203466519
url http://hdl.handle.net/10071/30720
identifier_str_mv TID:203466519
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137169498963968