Forecasting models for Portugal’s inbound tourism
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/30720 |
Resumo: | In Portugal, the tourism sector has a considerable weight in the GDP and, as Small and Medium Enterprises (SMEs) were the most impacted by the pandemic, any contribution to help them to recover is welcome. It is in this context that the European RESETTING project has been setup, aiming to provide tools that can help these SMEs. This research work fits into the purpose, by studying and providing tourism forecasting models so Portuguese SMEs can use them and adjust their products and services to tourism demand. After analysing the research field related to tourism forecasting, we have figured out the most popular algorithms and what data should be used. This research study follows a well-known methodology to deal with data – CRISP-DM. Hence, we collected and prepared the data of interest, then we analysed it so we could better understand it. Finally, we have created two classes of forecasting models: baseline and deep learning forecasting models. The more complex deep learning models were based on Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. From the experiments carried out we concluded that both deep learning models work well with data of daily frequency and were outperforming the baseline models. However, it did not work that well in the case of monthly data, when comparing with the baseline models. In the end, the models provided can help SMEs to obtain tourism demand predictions, both for the near-term – nowcasting – and the medium-term horizons. |
id |
RCAP_8b55b7a0b89e54b9dd02f11a2b012a5f |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/30720 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Forecasting models for Portugal’s inbound tourismTourism forecastingPortugal’s tourismForecasting modelsPrevisão do turismoTurismo de PortugalModelos de previsãoIn Portugal, the tourism sector has a considerable weight in the GDP and, as Small and Medium Enterprises (SMEs) were the most impacted by the pandemic, any contribution to help them to recover is welcome. It is in this context that the European RESETTING project has been setup, aiming to provide tools that can help these SMEs. This research work fits into the purpose, by studying and providing tourism forecasting models so Portuguese SMEs can use them and adjust their products and services to tourism demand. After analysing the research field related to tourism forecasting, we have figured out the most popular algorithms and what data should be used. This research study follows a well-known methodology to deal with data – CRISP-DM. Hence, we collected and prepared the data of interest, then we analysed it so we could better understand it. Finally, we have created two classes of forecasting models: baseline and deep learning forecasting models. The more complex deep learning models were based on Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. From the experiments carried out we concluded that both deep learning models work well with data of daily frequency and were outperforming the baseline models. However, it did not work that well in the case of monthly data, when comparing with the baseline models. In the end, the models provided can help SMEs to obtain tourism demand predictions, both for the near-term – nowcasting – and the medium-term horizons.Em Portugal, o mercado do turismo tem um peso considerável no PIB e, uma vez que as Pequenas e Médias Empresas (PMEs) do turismo foram as mais impactadas pela pandemia, qualquer contributo para a sua recuperação é bem-vindo. É neste contexto que surge o projeto europeu RESETTING, o qual visa disponibilizar ferramentas que possam auxiliar estas PMEs. Este trabalho de investigação enquadra-se neste propósito, estudando e disponibilizando modelos de previsão para o sector do turismo, de modo a que as PMEs portuguesas possam utilizar e, assim, ajustar os respetivos produtos e serviços à procura. Após estudo da área de investigação relacionada com modelos de previsão do turismo, constatámos quais seriam os algoritmos mais utilizados e que dados deveriam ser utilizados. Este trabalho de investigação segue uma metodologia para manipulação de dados – CRISP-DM. Assim, começamos por obter, preparar os dados de interesse e analisar os mesmos para os entender melhor. Como resultado, construimos duas classes de modelos de previsão: modelos de referência e modelos de deep learning. Os modelos mais complexos de deep learning são baseados nos algoritmos Long Short-Term Memory (LSTM) e Gated Recurrent Unit (GRU). Finalmente, concluimos que ambos os modelos de deep learning funcionam muito bem com dados de frequência diária, superando os modelos de referência. No entanto, não funcionaram tão bem para dados de frequência mensal quando comparados com os modelos de referência. Concluindo, os modelos apresentados podem auxiliar as PMEs a obter previsões sobre procura de turismo, quer no horizonte de curto-prazo, quer no horizonte de médio-prazo.2024-01-31T10:45:26Z2023-12-21T00:00:00Z2023-12-212023-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/30720TID:203466519engDias, Nuno Miguel de Castro de Amorim Oliveirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-04T01:20:28Zoai:repositorio.iscte-iul.pt:10071/30720Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:08:03.836993Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Forecasting models for Portugal’s inbound tourism |
title |
Forecasting models for Portugal’s inbound tourism |
spellingShingle |
Forecasting models for Portugal’s inbound tourism Dias, Nuno Miguel de Castro de Amorim Oliveira Tourism forecasting Portugal’s tourism Forecasting models Previsão do turismo Turismo de Portugal Modelos de previsão |
title_short |
Forecasting models for Portugal’s inbound tourism |
title_full |
Forecasting models for Portugal’s inbound tourism |
title_fullStr |
Forecasting models for Portugal’s inbound tourism |
title_full_unstemmed |
Forecasting models for Portugal’s inbound tourism |
title_sort |
Forecasting models for Portugal’s inbound tourism |
author |
Dias, Nuno Miguel de Castro de Amorim Oliveira |
author_facet |
Dias, Nuno Miguel de Castro de Amorim Oliveira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Dias, Nuno Miguel de Castro de Amorim Oliveira |
dc.subject.por.fl_str_mv |
Tourism forecasting Portugal’s tourism Forecasting models Previsão do turismo Turismo de Portugal Modelos de previsão |
topic |
Tourism forecasting Portugal’s tourism Forecasting models Previsão do turismo Turismo de Portugal Modelos de previsão |
description |
In Portugal, the tourism sector has a considerable weight in the GDP and, as Small and Medium Enterprises (SMEs) were the most impacted by the pandemic, any contribution to help them to recover is welcome. It is in this context that the European RESETTING project has been setup, aiming to provide tools that can help these SMEs. This research work fits into the purpose, by studying and providing tourism forecasting models so Portuguese SMEs can use them and adjust their products and services to tourism demand. After analysing the research field related to tourism forecasting, we have figured out the most popular algorithms and what data should be used. This research study follows a well-known methodology to deal with data – CRISP-DM. Hence, we collected and prepared the data of interest, then we analysed it so we could better understand it. Finally, we have created two classes of forecasting models: baseline and deep learning forecasting models. The more complex deep learning models were based on Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. From the experiments carried out we concluded that both deep learning models work well with data of daily frequency and were outperforming the baseline models. However, it did not work that well in the case of monthly data, when comparing with the baseline models. In the end, the models provided can help SMEs to obtain tourism demand predictions, both for the near-term – nowcasting – and the medium-term horizons. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-21T00:00:00Z 2023-12-21 2023-10 2024-01-31T10:45:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/30720 TID:203466519 |
url |
http://hdl.handle.net/10071/30720 |
identifier_str_mv |
TID:203466519 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137169498963968 |