Tourism flow forecasting for inbound European travel
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/30719 |
Resumo: | Tourism plays a pivotal role in the European economy. Among other aspects, the management of demand of products and services is critical to tourism development, so forecasting models contribute to such endeavour. This is even more relevant nowadays as the sector is recovering from the disruption caused by the global COVID-19 pandemic. In this study we build state-of-art forecasting models for tourism demand. In particular, models based on Deep Learning algorithms, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), and considering both daily and monthly data frequency. But the contribution goes beyond mere algorithm selection – it also delves into the nuances of feature engineering, incorporating data from exogenous variables such as search engine volume of searches, inflation, GDP and currency exchange rate. Through rigorous evaluation, supported by forecasting evaluation metrics, such as RMSE, R-squared and MAPE, it was discovered that GRU models consistently outperformed LSTM models. Additionally, our exploration revealed that the inclusion of external factors had limited impact on enhancing forecast accuracy. This work serves as a valuable resource for industry stakeholders beyond the academic realm. Its findings are used to deploy forecasts into a web-application developed in the context of the European Union funded project RESETTING, which aims to help SMEs of the tourism sector as they make a comeback from the tough restrictive years during the pandemic. |
id |
RCAP_faebb21f0b39432abf7f17a18393ad6a |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/30719 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Tourism flow forecasting for inbound European travelEuropean tourismTourism forecastingForecasting modelsTurismo EuropeuPrevisão de turismoModelos de previsãoTourism plays a pivotal role in the European economy. Among other aspects, the management of demand of products and services is critical to tourism development, so forecasting models contribute to such endeavour. This is even more relevant nowadays as the sector is recovering from the disruption caused by the global COVID-19 pandemic. In this study we build state-of-art forecasting models for tourism demand. In particular, models based on Deep Learning algorithms, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), and considering both daily and monthly data frequency. But the contribution goes beyond mere algorithm selection – it also delves into the nuances of feature engineering, incorporating data from exogenous variables such as search engine volume of searches, inflation, GDP and currency exchange rate. Through rigorous evaluation, supported by forecasting evaluation metrics, such as RMSE, R-squared and MAPE, it was discovered that GRU models consistently outperformed LSTM models. Additionally, our exploration revealed that the inclusion of external factors had limited impact on enhancing forecast accuracy. This work serves as a valuable resource for industry stakeholders beyond the academic realm. Its findings are used to deploy forecasts into a web-application developed in the context of the European Union funded project RESETTING, which aims to help SMEs of the tourism sector as they make a comeback from the tough restrictive years during the pandemic.O turismo desempenha um papel fundamental na economia europeia. Entre outros aspectos, a gestão da procura de produtos e serviços é fundamental para o desenvolvimento do turismo, pelo que modelos de previsão contribuem para esse esforço. Isto é ainda mais relevante hoje em dia à medida que o setor está a recuperar da perturbação causada pela pandemia global da COVID-19. Neste estudo desenvolvemos modelos de previsão avançados para a procura turística. Em particular, modelos baseados em algoritmos de Deep Learning, como Long Short-Term Memory (LSTM) e Gated Recurrent Unit (GRU), e considerando a frequência de dados diária e mensal. A contribuição vai para além da mera seleção de algoritmos – também analisa as nuances de feature engineering, incorporando dados de variáveis exógenas, como volume de pesquisas em motores de busca, inflação, PIB e taxa de câmbio. Através de uma avaliação rigorosa, apoiada por métricas de avaliação de previsões, como RMSE, R-quadrado e MAPE, constata-se que os modelos GRU superaram consistentemente os modelos LSTM. Além disso, a nossa investigação revelou que a inclusão de factores externos teve um impacto limitado no aumento da precisão das previsões. Este trabalho serve como um recurso valioso para o setor do turismo para além do domínio académico. Os resultados deste estudo são disponibilizados numa aplicação web desenvolvida no contexto do projecto RESETTING, financiado pela União Europeia. Refira-se que este projeto visa ajudar as PME do setor do turismo na recuperação dos anos difíceis e restritivos durante a pandemia.2024-01-31T10:38:11Z2023-12-21T00:00:00Z2023-12-212023-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/30719TID:203466616engGarcia, André Guilherme Ramalhoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T02:59:32Zoai:repositorio.iscte-iul.pt:10071/30719Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T02:59:32Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Tourism flow forecasting for inbound European travel |
title |
Tourism flow forecasting for inbound European travel |
spellingShingle |
Tourism flow forecasting for inbound European travel Garcia, André Guilherme Ramalho European tourism Tourism forecasting Forecasting models Turismo Europeu Previsão de turismo Modelos de previsão |
title_short |
Tourism flow forecasting for inbound European travel |
title_full |
Tourism flow forecasting for inbound European travel |
title_fullStr |
Tourism flow forecasting for inbound European travel |
title_full_unstemmed |
Tourism flow forecasting for inbound European travel |
title_sort |
Tourism flow forecasting for inbound European travel |
author |
Garcia, André Guilherme Ramalho |
author_facet |
Garcia, André Guilherme Ramalho |
author_role |
author |
dc.contributor.author.fl_str_mv |
Garcia, André Guilherme Ramalho |
dc.subject.por.fl_str_mv |
European tourism Tourism forecasting Forecasting models Turismo Europeu Previsão de turismo Modelos de previsão |
topic |
European tourism Tourism forecasting Forecasting models Turismo Europeu Previsão de turismo Modelos de previsão |
description |
Tourism plays a pivotal role in the European economy. Among other aspects, the management of demand of products and services is critical to tourism development, so forecasting models contribute to such endeavour. This is even more relevant nowadays as the sector is recovering from the disruption caused by the global COVID-19 pandemic. In this study we build state-of-art forecasting models for tourism demand. In particular, models based on Deep Learning algorithms, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), and considering both daily and monthly data frequency. But the contribution goes beyond mere algorithm selection – it also delves into the nuances of feature engineering, incorporating data from exogenous variables such as search engine volume of searches, inflation, GDP and currency exchange rate. Through rigorous evaluation, supported by forecasting evaluation metrics, such as RMSE, R-squared and MAPE, it was discovered that GRU models consistently outperformed LSTM models. Additionally, our exploration revealed that the inclusion of external factors had limited impact on enhancing forecast accuracy. This work serves as a valuable resource for industry stakeholders beyond the academic realm. Its findings are used to deploy forecasts into a web-application developed in the context of the European Union funded project RESETTING, which aims to help SMEs of the tourism sector as they make a comeback from the tough restrictive years during the pandemic. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-21T00:00:00Z 2023-12-21 2023-10 2024-01-31T10:38:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/30719 TID:203466616 |
url |
http://hdl.handle.net/10071/30719 |
identifier_str_mv |
TID:203466616 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546370616131584 |