On Elliptic equations with singular potentials and nonlinear boundary conditions

Detalhes bibliográficos
Autor(a) principal: Ferreira, Lucas C.F.
Data de Publicação: 2018
Outros Autores: Neves, Sérgio L.N. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1090/qam/1506
http://hdl.handle.net/11449/188205
Resumo: We consider the Laplace equation in the half-space satisfying a nonlinear Neumann condition with boundary potential. This class of problems appears in a number of mathematical and physics contexts and is linked to fractional dissipation problems. Here the boundary potential and nonlinearity are singular and of power-type, respectively. Depending on the degree of singularity of potentials, first we show a nonexistence result of positive solutions in D1,2(ℝ+ n) with a Lp-type integrability condition on ∂ℝ+ n. After, considering critical nonlinearities and conditions on the size and sign of potentials, we obtain the existence of positive solutions by means of minimization techniques and perturbation methods.
id UNSP_daa6fe09cb4919f364ed3362496810d7
oai_identifier_str oai:repositorio.unesp.br:11449/188205
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On Elliptic equations with singular potentials and nonlinear boundary conditionsElliptic equationsExistence and nonexistence problemsNonlinear boundary conditionsSingular potentialsWe consider the Laplace equation in the half-space satisfying a nonlinear Neumann condition with boundary potential. This class of problems appears in a number of mathematical and physics contexts and is linked to fractional dissipation problems. Here the boundary potential and nonlinearity are singular and of power-type, respectively. Depending on the degree of singularity of potentials, first we show a nonexistence result of positive solutions in D1,2(ℝ+ n) with a Lp-type integrability condition on ∂ℝ+ n. After, considering critical nonlinearities and conditions on the size and sign of potentials, we obtain the existence of positive solutions by means of minimization techniques and perturbation methods.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Department of Mathematics State University of CampinasDepartment of Mathematics Unesp-IBILCEDepartment of Mathematics Unesp-IBILCEUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Ferreira, Lucas C.F.Neves, Sérgio L.N. [UNESP]2019-10-06T16:00:37Z2019-10-06T16:00:37Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article699-711http://dx.doi.org/10.1090/qam/1506Quarterly of Applied Mathematics, v. 76, n. 4, p. 699-711, 2018.1552-44850033-569Xhttp://hdl.handle.net/11449/18820510.1090/qam/15062-s2.0-85054848781Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengQuarterly of Applied Mathematicsinfo:eu-repo/semantics/openAccess2021-10-22T22:23:35Zoai:repositorio.unesp.br:11449/188205Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:33:06.395217Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On Elliptic equations with singular potentials and nonlinear boundary conditions
title On Elliptic equations with singular potentials and nonlinear boundary conditions
spellingShingle On Elliptic equations with singular potentials and nonlinear boundary conditions
Ferreira, Lucas C.F.
Elliptic equations
Existence and nonexistence problems
Nonlinear boundary conditions
Singular potentials
title_short On Elliptic equations with singular potentials and nonlinear boundary conditions
title_full On Elliptic equations with singular potentials and nonlinear boundary conditions
title_fullStr On Elliptic equations with singular potentials and nonlinear boundary conditions
title_full_unstemmed On Elliptic equations with singular potentials and nonlinear boundary conditions
title_sort On Elliptic equations with singular potentials and nonlinear boundary conditions
author Ferreira, Lucas C.F.
author_facet Ferreira, Lucas C.F.
Neves, Sérgio L.N. [UNESP]
author_role author
author2 Neves, Sérgio L.N. [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Ferreira, Lucas C.F.
Neves, Sérgio L.N. [UNESP]
dc.subject.por.fl_str_mv Elliptic equations
Existence and nonexistence problems
Nonlinear boundary conditions
Singular potentials
topic Elliptic equations
Existence and nonexistence problems
Nonlinear boundary conditions
Singular potentials
description We consider the Laplace equation in the half-space satisfying a nonlinear Neumann condition with boundary potential. This class of problems appears in a number of mathematical and physics contexts and is linked to fractional dissipation problems. Here the boundary potential and nonlinearity are singular and of power-type, respectively. Depending on the degree of singularity of potentials, first we show a nonexistence result of positive solutions in D1,2(ℝ+ n) with a Lp-type integrability condition on ∂ℝ+ n. After, considering critical nonlinearities and conditions on the size and sign of potentials, we obtain the existence of positive solutions by means of minimization techniques and perturbation methods.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
2019-10-06T16:00:37Z
2019-10-06T16:00:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1090/qam/1506
Quarterly of Applied Mathematics, v. 76, n. 4, p. 699-711, 2018.
1552-4485
0033-569X
http://hdl.handle.net/11449/188205
10.1090/qam/1506
2-s2.0-85054848781
url http://dx.doi.org/10.1090/qam/1506
http://hdl.handle.net/11449/188205
identifier_str_mv Quarterly of Applied Mathematics, v. 76, n. 4, p. 699-711, 2018.
1552-4485
0033-569X
10.1090/qam/1506
2-s2.0-85054848781
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Quarterly of Applied Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 699-711
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129334143090688