On Elliptic equations with singular potentials and nonlinear boundary conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1090/qam/1506 http://hdl.handle.net/11449/188205 |
Resumo: | We consider the Laplace equation in the half-space satisfying a nonlinear Neumann condition with boundary potential. This class of problems appears in a number of mathematical and physics contexts and is linked to fractional dissipation problems. Here the boundary potential and nonlinearity are singular and of power-type, respectively. Depending on the degree of singularity of potentials, first we show a nonexistence result of positive solutions in D1,2(ℝ+ n) with a Lp-type integrability condition on ∂ℝ+ n. After, considering critical nonlinearities and conditions on the size and sign of potentials, we obtain the existence of positive solutions by means of minimization techniques and perturbation methods. |
id |
UNSP_daa6fe09cb4919f364ed3362496810d7 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/188205 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On Elliptic equations with singular potentials and nonlinear boundary conditionsElliptic equationsExistence and nonexistence problemsNonlinear boundary conditionsSingular potentialsWe consider the Laplace equation in the half-space satisfying a nonlinear Neumann condition with boundary potential. This class of problems appears in a number of mathematical and physics contexts and is linked to fractional dissipation problems. Here the boundary potential and nonlinearity are singular and of power-type, respectively. Depending on the degree of singularity of potentials, first we show a nonexistence result of positive solutions in D1,2(ℝ+ n) with a Lp-type integrability condition on ∂ℝ+ n. After, considering critical nonlinearities and conditions on the size and sign of potentials, we obtain the existence of positive solutions by means of minimization techniques and perturbation methods.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Department of Mathematics State University of CampinasDepartment of Mathematics Unesp-IBILCEDepartment of Mathematics Unesp-IBILCEUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Ferreira, Lucas C.F.Neves, Sérgio L.N. [UNESP]2019-10-06T16:00:37Z2019-10-06T16:00:37Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article699-711http://dx.doi.org/10.1090/qam/1506Quarterly of Applied Mathematics, v. 76, n. 4, p. 699-711, 2018.1552-44850033-569Xhttp://hdl.handle.net/11449/18820510.1090/qam/15062-s2.0-85054848781Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengQuarterly of Applied Mathematicsinfo:eu-repo/semantics/openAccess2021-10-22T22:23:35Zoai:repositorio.unesp.br:11449/188205Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:33:06.395217Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On Elliptic equations with singular potentials and nonlinear boundary conditions |
title |
On Elliptic equations with singular potentials and nonlinear boundary conditions |
spellingShingle |
On Elliptic equations with singular potentials and nonlinear boundary conditions Ferreira, Lucas C.F. Elliptic equations Existence and nonexistence problems Nonlinear boundary conditions Singular potentials |
title_short |
On Elliptic equations with singular potentials and nonlinear boundary conditions |
title_full |
On Elliptic equations with singular potentials and nonlinear boundary conditions |
title_fullStr |
On Elliptic equations with singular potentials and nonlinear boundary conditions |
title_full_unstemmed |
On Elliptic equations with singular potentials and nonlinear boundary conditions |
title_sort |
On Elliptic equations with singular potentials and nonlinear boundary conditions |
author |
Ferreira, Lucas C.F. |
author_facet |
Ferreira, Lucas C.F. Neves, Sérgio L.N. [UNESP] |
author_role |
author |
author2 |
Neves, Sérgio L.N. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Ferreira, Lucas C.F. Neves, Sérgio L.N. [UNESP] |
dc.subject.por.fl_str_mv |
Elliptic equations Existence and nonexistence problems Nonlinear boundary conditions Singular potentials |
topic |
Elliptic equations Existence and nonexistence problems Nonlinear boundary conditions Singular potentials |
description |
We consider the Laplace equation in the half-space satisfying a nonlinear Neumann condition with boundary potential. This class of problems appears in a number of mathematical and physics contexts and is linked to fractional dissipation problems. Here the boundary potential and nonlinearity are singular and of power-type, respectively. Depending on the degree of singularity of potentials, first we show a nonexistence result of positive solutions in D1,2(ℝ+ n) with a Lp-type integrability condition on ∂ℝ+ n. After, considering critical nonlinearities and conditions on the size and sign of potentials, we obtain the existence of positive solutions by means of minimization techniques and perturbation methods. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 2019-10-06T16:00:37Z 2019-10-06T16:00:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1090/qam/1506 Quarterly of Applied Mathematics, v. 76, n. 4, p. 699-711, 2018. 1552-4485 0033-569X http://hdl.handle.net/11449/188205 10.1090/qam/1506 2-s2.0-85054848781 |
url |
http://dx.doi.org/10.1090/qam/1506 http://hdl.handle.net/11449/188205 |
identifier_str_mv |
Quarterly of Applied Mathematics, v. 76, n. 4, p. 699-711, 2018. 1552-4485 0033-569X 10.1090/qam/1506 2-s2.0-85054848781 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Quarterly of Applied Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
699-711 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129334143090688 |