Rare and extreme events: the case of COVID-19 pandemic
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/22480 |
Resumo: | Complex systems have characteristics that give rise to the emergence of rare and extreme events. This paper addresses an example of such type of crisis, namely the spread of the new Coronavirus disease 2019 (COVID-19). The study deals with the statistical comparison and visualization of country-based real-data for the period December 31, 2019, up to April 12, 2020, and does not intend to address the medical treatment of the disease. Two distinct approaches are considered, the description of the number of infected people across time by means of heuristic models fitting the real-world data, and the comparison of countries based on hierarchical clustering and multidimensional scaling. The computational and mathematical modeling lead to the emergence of patterns, highlighting similarities and differences between the countries, pointing toward the main characteristics of the complex dynamics. |
id |
RCAP_9206fae488cb743e5814fa80116ac803 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/22480 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Rare and extreme events: the case of COVID-19 pandemicCoronavirus disease 2019Extreme eventsRegressionMultidimensional scalingHierarchical clusteringComplex systemsComplex systems have characteristics that give rise to the emergence of rare and extreme events. This paper addresses an example of such type of crisis, namely the spread of the new Coronavirus disease 2019 (COVID-19). The study deals with the statistical comparison and visualization of country-based real-data for the period December 31, 2019, up to April 12, 2020, and does not intend to address the medical treatment of the disease. Two distinct approaches are considered, the description of the number of infected people across time by means of heuristic models fitting the real-world data, and the comparison of countries based on hierarchical clustering and multidimensional scaling. The computational and mathematical modeling lead to the emergence of patterns, highlighting similarities and differences between the countries, pointing toward the main characteristics of the complex dynamics.SpringerRepositório Científico do Instituto Politécnico do PortoTenreiro Machado, J. A.Lopes, António M.20202035-01-01T00:00:00Z2020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/22480eng0924-090X10.1007/s11071-020-05680-winfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-22T01:46:51Zoai:recipp.ipp.pt:10400.22/22480Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:42:33.985122Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Rare and extreme events: the case of COVID-19 pandemic |
title |
Rare and extreme events: the case of COVID-19 pandemic |
spellingShingle |
Rare and extreme events: the case of COVID-19 pandemic Tenreiro Machado, J. A. Coronavirus disease 2019 Extreme events Regression Multidimensional scaling Hierarchical clustering Complex systems |
title_short |
Rare and extreme events: the case of COVID-19 pandemic |
title_full |
Rare and extreme events: the case of COVID-19 pandemic |
title_fullStr |
Rare and extreme events: the case of COVID-19 pandemic |
title_full_unstemmed |
Rare and extreme events: the case of COVID-19 pandemic |
title_sort |
Rare and extreme events: the case of COVID-19 pandemic |
author |
Tenreiro Machado, J. A. |
author_facet |
Tenreiro Machado, J. A. Lopes, António M. |
author_role |
author |
author2 |
Lopes, António M. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Tenreiro Machado, J. A. Lopes, António M. |
dc.subject.por.fl_str_mv |
Coronavirus disease 2019 Extreme events Regression Multidimensional scaling Hierarchical clustering Complex systems |
topic |
Coronavirus disease 2019 Extreme events Regression Multidimensional scaling Hierarchical clustering Complex systems |
description |
Complex systems have characteristics that give rise to the emergence of rare and extreme events. This paper addresses an example of such type of crisis, namely the spread of the new Coronavirus disease 2019 (COVID-19). The study deals with the statistical comparison and visualization of country-based real-data for the period December 31, 2019, up to April 12, 2020, and does not intend to address the medical treatment of the disease. Two distinct approaches are considered, the description of the number of infected people across time by means of heuristic models fitting the real-world data, and the comparison of countries based on hierarchical clustering and multidimensional scaling. The computational and mathematical modeling lead to the emergence of patterns, highlighting similarities and differences between the countries, pointing toward the main characteristics of the complex dynamics. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2020-01-01T00:00:00Z 2035-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/22480 |
url |
http://hdl.handle.net/10400.22/22480 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0924-090X 10.1007/s11071-020-05680-w |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131512151474176 |