On (p, q) − equations with concave terms

Detalhes bibliográficos
Autor(a) principal: Papageorgiou, Nikolaos S.
Data de Publicação: 2016
Outros Autores: Santos, Sandrina R. A., Staicu, Vasile
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/16196
Resumo: We consider a (p, q)− equation (1 < q < p, p ≥ 2) with a parametric concave term and a (p − 1)− linear perturbation. We show that the problem have five nontrivial smooth solutions: four of constant sign and the fifth nodal. When q = 2 (i.e., (p, 2) equation) we show that the problem has six nontrivial smooth solutions, but we do not specify the sign of the sixth solution. Our approach uses variational methods, together with truncation and comparison techniques and Morse theory.
id RCAP_92d8ebe61b30c8d9d9e4df54f99a2104
oai_identifier_str oai:ria.ua.pt:10773/16196
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On (p, q) − equations with concave termsNonlinear regularityNonlinear maximum principleCritical groupsNodal solutionMountain pass theoremStrong comparison principleWe consider a (p, q)− equation (1 < q < p, p ≥ 2) with a parametric concave term and a (p − 1)− linear perturbation. We show that the problem have five nontrivial smooth solutions: four of constant sign and the fifth nodal. When q = 2 (i.e., (p, 2) equation) we show that the problem has six nontrivial smooth solutions, but we do not specify the sign of the sixth solution. Our approach uses variational methods, together with truncation and comparison techniques and Morse theory.Gakkotosho2016-10-19T08:43:43Z2016-01-01T00:00:00Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/16196eng1343-4373Papageorgiou, Nikolaos S.Santos, Sandrina R. A.Staicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:28:43Zoai:ria.ua.pt:10773/16196Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:53.114405Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On (p, q) − equations with concave terms
title On (p, q) − equations with concave terms
spellingShingle On (p, q) − equations with concave terms
Papageorgiou, Nikolaos S.
Nonlinear regularity
Nonlinear maximum principle
Critical groups
Nodal solution
Mountain pass theorem
Strong comparison principle
title_short On (p, q) − equations with concave terms
title_full On (p, q) − equations with concave terms
title_fullStr On (p, q) − equations with concave terms
title_full_unstemmed On (p, q) − equations with concave terms
title_sort On (p, q) − equations with concave terms
author Papageorgiou, Nikolaos S.
author_facet Papageorgiou, Nikolaos S.
Santos, Sandrina R. A.
Staicu, Vasile
author_role author
author2 Santos, Sandrina R. A.
Staicu, Vasile
author2_role author
author
dc.contributor.author.fl_str_mv Papageorgiou, Nikolaos S.
Santos, Sandrina R. A.
Staicu, Vasile
dc.subject.por.fl_str_mv Nonlinear regularity
Nonlinear maximum principle
Critical groups
Nodal solution
Mountain pass theorem
Strong comparison principle
topic Nonlinear regularity
Nonlinear maximum principle
Critical groups
Nodal solution
Mountain pass theorem
Strong comparison principle
description We consider a (p, q)− equation (1 < q < p, p ≥ 2) with a parametric concave term and a (p − 1)− linear perturbation. We show that the problem have five nontrivial smooth solutions: four of constant sign and the fifth nodal. When q = 2 (i.e., (p, 2) equation) we show that the problem has six nontrivial smooth solutions, but we do not specify the sign of the sixth solution. Our approach uses variational methods, together with truncation and comparison techniques and Morse theory.
publishDate 2016
dc.date.none.fl_str_mv 2016-10-19T08:43:43Z
2016-01-01T00:00:00Z
2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/16196
url http://hdl.handle.net/10773/16196
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1343-4373
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Gakkotosho
publisher.none.fl_str_mv Gakkotosho
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137558166241280