On (p, q) − equations with concave terms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/16196 |
Resumo: | We consider a (p, q)− equation (1 < q < p, p ≥ 2) with a parametric concave term and a (p − 1)− linear perturbation. We show that the problem have five nontrivial smooth solutions: four of constant sign and the fifth nodal. When q = 2 (i.e., (p, 2) equation) we show that the problem has six nontrivial smooth solutions, but we do not specify the sign of the sixth solution. Our approach uses variational methods, together with truncation and comparison techniques and Morse theory. |
id |
RCAP_92d8ebe61b30c8d9d9e4df54f99a2104 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/16196 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On (p, q) − equations with concave termsNonlinear regularityNonlinear maximum principleCritical groupsNodal solutionMountain pass theoremStrong comparison principleWe consider a (p, q)− equation (1 < q < p, p ≥ 2) with a parametric concave term and a (p − 1)− linear perturbation. We show that the problem have five nontrivial smooth solutions: four of constant sign and the fifth nodal. When q = 2 (i.e., (p, 2) equation) we show that the problem has six nontrivial smooth solutions, but we do not specify the sign of the sixth solution. Our approach uses variational methods, together with truncation and comparison techniques and Morse theory.Gakkotosho2016-10-19T08:43:43Z2016-01-01T00:00:00Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/16196eng1343-4373Papageorgiou, Nikolaos S.Santos, Sandrina R. A.Staicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:28:43Zoai:ria.ua.pt:10773/16196Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:53.114405Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On (p, q) − equations with concave terms |
title |
On (p, q) − equations with concave terms |
spellingShingle |
On (p, q) − equations with concave terms Papageorgiou, Nikolaos S. Nonlinear regularity Nonlinear maximum principle Critical groups Nodal solution Mountain pass theorem Strong comparison principle |
title_short |
On (p, q) − equations with concave terms |
title_full |
On (p, q) − equations with concave terms |
title_fullStr |
On (p, q) − equations with concave terms |
title_full_unstemmed |
On (p, q) − equations with concave terms |
title_sort |
On (p, q) − equations with concave terms |
author |
Papageorgiou, Nikolaos S. |
author_facet |
Papageorgiou, Nikolaos S. Santos, Sandrina R. A. Staicu, Vasile |
author_role |
author |
author2 |
Santos, Sandrina R. A. Staicu, Vasile |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Papageorgiou, Nikolaos S. Santos, Sandrina R. A. Staicu, Vasile |
dc.subject.por.fl_str_mv |
Nonlinear regularity Nonlinear maximum principle Critical groups Nodal solution Mountain pass theorem Strong comparison principle |
topic |
Nonlinear regularity Nonlinear maximum principle Critical groups Nodal solution Mountain pass theorem Strong comparison principle |
description |
We consider a (p, q)− equation (1 < q < p, p ≥ 2) with a parametric concave term and a (p − 1)− linear perturbation. We show that the problem have five nontrivial smooth solutions: four of constant sign and the fifth nodal. When q = 2 (i.e., (p, 2) equation) we show that the problem has six nontrivial smooth solutions, but we do not specify the sign of the sixth solution. Our approach uses variational methods, together with truncation and comparison techniques and Morse theory. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10-19T08:43:43Z 2016-01-01T00:00:00Z 2016 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/16196 |
url |
http://hdl.handle.net/10773/16196 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1343-4373 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Gakkotosho |
publisher.none.fl_str_mv |
Gakkotosho |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137558166241280 |