Detection of Waste Containers Using Computer Vision
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/7290 |
Resumo: | This work is a part of an ongoing study to substitute the identification of waste containers via radio-frequency identification. The purpose of this paper is to propose a method of identification based on computer vision that performs detection using images, video, or real-time video capture to identify different types of waste containers. Compared to the current method of identification, this approach is more agile and does not require as many resources. Two approaches are employed, one using feature detectors/descriptors and other using convolutional neural networks. The former used a vector of locally aggregated descriptors (VLAD); however, it failed to accomplish what was desired. The latter used you only look once (YOLO), a convolutional neural network, and reached an accuracy in the range of 90%, meaning that it correctly identified and classified 90% of the pictures used on the test set. |
id |
RCAP_95766e8d1b1e1c41a26d4699c57e794c |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/7290 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Detection of Waste Containers Using Computer VisionWaste containerObject detectionVLADConvolutional neural networksYOLOThis work is a part of an ongoing study to substitute the identification of waste containers via radio-frequency identification. The purpose of this paper is to propose a method of identification based on computer vision that performs detection using images, video, or real-time video capture to identify different types of waste containers. Compared to the current method of identification, this approach is more agile and does not require as many resources. Two approaches are employed, one using feature detectors/descriptors and other using convolutional neural networks. The former used a vector of locally aggregated descriptors (VLAD); however, it failed to accomplish what was desired. The latter used you only look once (YOLO), a convolutional neural network, and reached an accuracy in the range of 90%, meaning that it correctly identified and classified 90% of the pictures used on the test set.MDPIuBibliorumValente, MiguelSilva, HélioCaldeira, JoãoSoares, Vasco N. G. J.Gaspar, Pedro Dinis2019-10-18T14:12:16Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/7290eng2571-557710.3390/asi2010011info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:46:31Zoai:ubibliorum.ubi.pt:10400.6/7290Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:47:50.375076Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Detection of Waste Containers Using Computer Vision |
title |
Detection of Waste Containers Using Computer Vision |
spellingShingle |
Detection of Waste Containers Using Computer Vision Valente, Miguel Waste container Object detection VLAD Convolutional neural networks YOLO |
title_short |
Detection of Waste Containers Using Computer Vision |
title_full |
Detection of Waste Containers Using Computer Vision |
title_fullStr |
Detection of Waste Containers Using Computer Vision |
title_full_unstemmed |
Detection of Waste Containers Using Computer Vision |
title_sort |
Detection of Waste Containers Using Computer Vision |
author |
Valente, Miguel |
author_facet |
Valente, Miguel Silva, Hélio Caldeira, João Soares, Vasco N. G. J. Gaspar, Pedro Dinis |
author_role |
author |
author2 |
Silva, Hélio Caldeira, João Soares, Vasco N. G. J. Gaspar, Pedro Dinis |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Valente, Miguel Silva, Hélio Caldeira, João Soares, Vasco N. G. J. Gaspar, Pedro Dinis |
dc.subject.por.fl_str_mv |
Waste container Object detection VLAD Convolutional neural networks YOLO |
topic |
Waste container Object detection VLAD Convolutional neural networks YOLO |
description |
This work is a part of an ongoing study to substitute the identification of waste containers via radio-frequency identification. The purpose of this paper is to propose a method of identification based on computer vision that performs detection using images, video, or real-time video capture to identify different types of waste containers. Compared to the current method of identification, this approach is more agile and does not require as many resources. Two approaches are employed, one using feature detectors/descriptors and other using convolutional neural networks. The former used a vector of locally aggregated descriptors (VLAD); however, it failed to accomplish what was desired. The latter used you only look once (YOLO), a convolutional neural network, and reached an accuracy in the range of 90%, meaning that it correctly identified and classified 90% of the pictures used on the test set. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-18T14:12:16Z 2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/7290 |
url |
http://hdl.handle.net/10400.6/7290 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2571-5577 10.3390/asi2010011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136373429501952 |