Detection of Waste Containers Using Computer Vision

Detalhes bibliográficos
Autor(a) principal: Valente, Miguel
Data de Publicação: 2019
Outros Autores: Silva, Hélio, Caldeira, João, Soares, Vasco N. G. J., Gaspar, Pedro Dinis
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/7290
Resumo: This work is a part of an ongoing study to substitute the identification of waste containers via radio-frequency identification. The purpose of this paper is to propose a method of identification based on computer vision that performs detection using images, video, or real-time video capture to identify different types of waste containers. Compared to the current method of identification, this approach is more agile and does not require as many resources. Two approaches are employed, one using feature detectors/descriptors and other using convolutional neural networks. The former used a vector of locally aggregated descriptors (VLAD); however, it failed to accomplish what was desired. The latter used you only look once (YOLO), a convolutional neural network, and reached an accuracy in the range of 90%, meaning that it correctly identified and classified 90% of the pictures used on the test set.
id RCAP_95766e8d1b1e1c41a26d4699c57e794c
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/7290
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Detection of Waste Containers Using Computer VisionWaste containerObject detectionVLADConvolutional neural networksYOLOThis work is a part of an ongoing study to substitute the identification of waste containers via radio-frequency identification. The purpose of this paper is to propose a method of identification based on computer vision that performs detection using images, video, or real-time video capture to identify different types of waste containers. Compared to the current method of identification, this approach is more agile and does not require as many resources. Two approaches are employed, one using feature detectors/descriptors and other using convolutional neural networks. The former used a vector of locally aggregated descriptors (VLAD); however, it failed to accomplish what was desired. The latter used you only look once (YOLO), a convolutional neural network, and reached an accuracy in the range of 90%, meaning that it correctly identified and classified 90% of the pictures used on the test set.MDPIuBibliorumValente, MiguelSilva, HélioCaldeira, JoãoSoares, Vasco N. G. J.Gaspar, Pedro Dinis2019-10-18T14:12:16Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/7290eng2571-557710.3390/asi2010011info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:46:31Zoai:ubibliorum.ubi.pt:10400.6/7290Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:47:50.375076Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Detection of Waste Containers Using Computer Vision
title Detection of Waste Containers Using Computer Vision
spellingShingle Detection of Waste Containers Using Computer Vision
Valente, Miguel
Waste container
Object detection
VLAD
Convolutional neural networks
YOLO
title_short Detection of Waste Containers Using Computer Vision
title_full Detection of Waste Containers Using Computer Vision
title_fullStr Detection of Waste Containers Using Computer Vision
title_full_unstemmed Detection of Waste Containers Using Computer Vision
title_sort Detection of Waste Containers Using Computer Vision
author Valente, Miguel
author_facet Valente, Miguel
Silva, Hélio
Caldeira, João
Soares, Vasco N. G. J.
Gaspar, Pedro Dinis
author_role author
author2 Silva, Hélio
Caldeira, João
Soares, Vasco N. G. J.
Gaspar, Pedro Dinis
author2_role author
author
author
author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Valente, Miguel
Silva, Hélio
Caldeira, João
Soares, Vasco N. G. J.
Gaspar, Pedro Dinis
dc.subject.por.fl_str_mv Waste container
Object detection
VLAD
Convolutional neural networks
YOLO
topic Waste container
Object detection
VLAD
Convolutional neural networks
YOLO
description This work is a part of an ongoing study to substitute the identification of waste containers via radio-frequency identification. The purpose of this paper is to propose a method of identification based on computer vision that performs detection using images, video, or real-time video capture to identify different types of waste containers. Compared to the current method of identification, this approach is more agile and does not require as many resources. Two approaches are employed, one using feature detectors/descriptors and other using convolutional neural networks. The former used a vector of locally aggregated descriptors (VLAD); however, it failed to accomplish what was desired. The latter used you only look once (YOLO), a convolutional neural network, and reached an accuracy in the range of 90%, meaning that it correctly identified and classified 90% of the pictures used on the test set.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-18T14:12:16Z
2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/7290
url http://hdl.handle.net/10400.6/7290
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2571-5577
10.3390/asi2010011
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136373429501952