Practical Aggregation in the Edge

Detalhes bibliográficos
Autor(a) principal: Costa, Pedro Ákos Horváth Filipe da
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/59502
Resumo: Due to the increasing amounts of data produced by applications and devices, cloud infrastructures are becoming unable to timely process and provide answers back to users. This has led to the emergence of the edge computing paradigm that aims at moving computations closer to end user devices. Edge computing can be defined as performing computations outside the boundaries of cloud data centres. This however, can be materialised across very different scenarios considering the broad spectrum of devices that can be leveraged to perform computations in the edge. In this thesis, we focus on a concrete scenario of edge computing, that of multiple devices with wireless capabilities that collectively form a wireless ad hoc network to perform distributed computations. We aim at devising practical solutions for these scenarios however, there is a lack of tools to help us in achieving such goal. To address this first limitation we propose a novel framework, called Yggdrasil, that is specifically tailored to develop and execute distributed protocols over wireless ad hoc networks on commodity devices. As to enable distributed computations in such networks, we focus on the particular case of distributed data aggregation. In particular, we address a harder variant of this problem, that we dub distributed continuous aggregation, where input values used for the computation of the aggregation function may change over time, and propose a novel distributed continuous aggregation protocol, called MiRAge. We have implemented and validated both Yggdrasil and MiRAge through an extensive experimental evaluation using a test-bed composed of 24 Raspberry Pi’s. Our results show that Yggdrasil provides adequate abstractions and tools to implement and execute distributed protocols in wireless ad hoc settings. Our evaluation is also composed of a practical comparative study on distributed continuous aggregation protocols, that shows that MiRAge is more robust and achieves more precise aggregation results than competing state-of-the-art alternatives.
id RCAP_958d56288d9a4107726fccd0a0d81959
oai_identifier_str oai:run.unl.pt:10362/59502
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Practical Aggregation in the EdgeEdge ComputingWireless Ad Hoc NetworksAggregationFrameworksDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaDue to the increasing amounts of data produced by applications and devices, cloud infrastructures are becoming unable to timely process and provide answers back to users. This has led to the emergence of the edge computing paradigm that aims at moving computations closer to end user devices. Edge computing can be defined as performing computations outside the boundaries of cloud data centres. This however, can be materialised across very different scenarios considering the broad spectrum of devices that can be leveraged to perform computations in the edge. In this thesis, we focus on a concrete scenario of edge computing, that of multiple devices with wireless capabilities that collectively form a wireless ad hoc network to perform distributed computations. We aim at devising practical solutions for these scenarios however, there is a lack of tools to help us in achieving such goal. To address this first limitation we propose a novel framework, called Yggdrasil, that is specifically tailored to develop and execute distributed protocols over wireless ad hoc networks on commodity devices. As to enable distributed computations in such networks, we focus on the particular case of distributed data aggregation. In particular, we address a harder variant of this problem, that we dub distributed continuous aggregation, where input values used for the computation of the aggregation function may change over time, and propose a novel distributed continuous aggregation protocol, called MiRAge. We have implemented and validated both Yggdrasil and MiRAge through an extensive experimental evaluation using a test-bed composed of 24 Raspberry Pi’s. Our results show that Yggdrasil provides adequate abstractions and tools to implement and execute distributed protocols in wireless ad hoc settings. Our evaluation is also composed of a practical comparative study on distributed continuous aggregation protocols, that shows that MiRAge is more robust and achieves more precise aggregation results than competing state-of-the-art alternatives.Leitão, JoãoRUNCosta, Pedro Ákos Horváth Filipe da2019-02-04T13:51:21Z2018-1220182018-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/59502enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:28:32Zoai:run.unl.pt:10362/59502Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:33:23.469451Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Practical Aggregation in the Edge
title Practical Aggregation in the Edge
spellingShingle Practical Aggregation in the Edge
Costa, Pedro Ákos Horváth Filipe da
Edge Computing
Wireless Ad Hoc Networks
Aggregation
Frameworks
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Practical Aggregation in the Edge
title_full Practical Aggregation in the Edge
title_fullStr Practical Aggregation in the Edge
title_full_unstemmed Practical Aggregation in the Edge
title_sort Practical Aggregation in the Edge
author Costa, Pedro Ákos Horváth Filipe da
author_facet Costa, Pedro Ákos Horváth Filipe da
author_role author
dc.contributor.none.fl_str_mv Leitão, João
RUN
dc.contributor.author.fl_str_mv Costa, Pedro Ákos Horváth Filipe da
dc.subject.por.fl_str_mv Edge Computing
Wireless Ad Hoc Networks
Aggregation
Frameworks
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Edge Computing
Wireless Ad Hoc Networks
Aggregation
Frameworks
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Due to the increasing amounts of data produced by applications and devices, cloud infrastructures are becoming unable to timely process and provide answers back to users. This has led to the emergence of the edge computing paradigm that aims at moving computations closer to end user devices. Edge computing can be defined as performing computations outside the boundaries of cloud data centres. This however, can be materialised across very different scenarios considering the broad spectrum of devices that can be leveraged to perform computations in the edge. In this thesis, we focus on a concrete scenario of edge computing, that of multiple devices with wireless capabilities that collectively form a wireless ad hoc network to perform distributed computations. We aim at devising practical solutions for these scenarios however, there is a lack of tools to help us in achieving such goal. To address this first limitation we propose a novel framework, called Yggdrasil, that is specifically tailored to develop and execute distributed protocols over wireless ad hoc networks on commodity devices. As to enable distributed computations in such networks, we focus on the particular case of distributed data aggregation. In particular, we address a harder variant of this problem, that we dub distributed continuous aggregation, where input values used for the computation of the aggregation function may change over time, and propose a novel distributed continuous aggregation protocol, called MiRAge. We have implemented and validated both Yggdrasil and MiRAge through an extensive experimental evaluation using a test-bed composed of 24 Raspberry Pi’s. Our results show that Yggdrasil provides adequate abstractions and tools to implement and execute distributed protocols in wireless ad hoc settings. Our evaluation is also composed of a practical comparative study on distributed continuous aggregation protocols, that shows that MiRAge is more robust and achieves more precise aggregation results than competing state-of-the-art alternatives.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
2018
2018-12-01T00:00:00Z
2019-02-04T13:51:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/59502
url http://hdl.handle.net/10362/59502
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137955741171712