About the von Neumann regularity of triangular block matrices

Detalhes bibliográficos
Autor(a) principal: Patrício, Pedro
Data de Publicação: 2001
Outros Autores: Puystjens, Roland
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/3917
Resumo: Necessary and sufficient conditions are given for the von Neumann regularity of triangular block matrices with von Neumann regular diagonal blocks over arbitrary rings. This leads to the characterization of the von Neumann regularity of a class of triangular Toeplitz matrices over arbitrary rings. Some special results and a new algorithm are derived for triangular Toeplitz matrices over commutative rings. Finally, the Drazin invertibility of some companion matrices over arbitrary rings is considered, as an application.
id RCAP_95dc86fb39ad38357c902b84947c9d63
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/3917
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling About the von Neumann regularity of triangular block matricesBlock matrices over ringsvon Neumann regularityTriangular Toeplitz matricesScience & TechnologyNecessary and sufficient conditions are given for the von Neumann regularity of triangular block matrices with von Neumann regular diagonal blocks over arbitrary rings. This leads to the characterization of the von Neumann regularity of a class of triangular Toeplitz matrices over arbitrary rings. Some special results and a new algorithm are derived for triangular Toeplitz matrices over commutative rings. Finally, the Drazin invertibility of some companion matrices over arbitrary rings is considered, as an application.Fundação para a Ciência e a Tecnologia (FCT).ElsevierUniversidade do MinhoPatrício, PedroPuystjens, Roland2001-08-012001-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/3917eng"Linear Algebra and its Applications". ISSN 0024-3795. 332/334 (2001) 485-502.0024-379510.1016/S0024-3795(01)00295-6http://www.elsevier.com/wps/find/journaldescription.cws_home/522483/description#descriptioninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:48:08Zoai:repositorium.sdum.uminho.pt:1822/3917Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:46:19.307964Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv About the von Neumann regularity of triangular block matrices
title About the von Neumann regularity of triangular block matrices
spellingShingle About the von Neumann regularity of triangular block matrices
Patrício, Pedro
Block matrices over rings
von Neumann regularity
Triangular Toeplitz matrices
Science & Technology
title_short About the von Neumann regularity of triangular block matrices
title_full About the von Neumann regularity of triangular block matrices
title_fullStr About the von Neumann regularity of triangular block matrices
title_full_unstemmed About the von Neumann regularity of triangular block matrices
title_sort About the von Neumann regularity of triangular block matrices
author Patrício, Pedro
author_facet Patrício, Pedro
Puystjens, Roland
author_role author
author2 Puystjens, Roland
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Patrício, Pedro
Puystjens, Roland
dc.subject.por.fl_str_mv Block matrices over rings
von Neumann regularity
Triangular Toeplitz matrices
Science & Technology
topic Block matrices over rings
von Neumann regularity
Triangular Toeplitz matrices
Science & Technology
description Necessary and sufficient conditions are given for the von Neumann regularity of triangular block matrices with von Neumann regular diagonal blocks over arbitrary rings. This leads to the characterization of the von Neumann regularity of a class of triangular Toeplitz matrices over arbitrary rings. Some special results and a new algorithm are derived for triangular Toeplitz matrices over commutative rings. Finally, the Drazin invertibility of some companion matrices over arbitrary rings is considered, as an application.
publishDate 2001
dc.date.none.fl_str_mv 2001-08-01
2001-08-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/3917
url http://hdl.handle.net/1822/3917
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Linear Algebra and its Applications". ISSN 0024-3795. 332/334 (2001) 485-502.
0024-3795
10.1016/S0024-3795(01)00295-6
http://www.elsevier.com/wps/find/journaldescription.cws_home/522483/description#description
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133031261274112