Diagonalizing triangular matrices via orthogonal Pierce decompositions

Detalhes bibliográficos
Autor(a) principal: Hartwig, Robert E.
Data de Publicação: 2005
Outros Autores: Patrício, Pedro, Puystjens, Roland
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/1249
Resumo: A class of sufficient conditions is given to ensure that the sum a+b in a ring R, is equivalent to a sum x + y, which is an orthogonal Pierce decomposition. This is then used to show that a lower triangular matrix, with a regular diagonal is equivalent to its diagonal iff the matrix admits a lower triangular von Neumann inverse.
id RCAP_d359c8117ff2700255c7680f896b133d
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/1249
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Diagonalizing triangular matrices via orthogonal Pierce decompositionsRingsTriangular matricesVon Neumann regularityDiagonalizationScience & TechnologyA class of sufficient conditions is given to ensure that the sum a+b in a ring R, is equivalent to a sum x + y, which is an orthogonal Pierce decomposition. This is then used to show that a lower triangular matrix, with a regular diagonal is equivalent to its diagonal iff the matrix admits a lower triangular von Neumann inverse.Fundação para a Ciência e a Tecnologia (FCT) – Programa Operacional “Ciência, Tecnologia, Inovação” (POCTI).ElsevierUniversidade do MinhoHartwig, Robert E.Patrício, PedroPuystjens, Roland2005-05-152005-05-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/1249eng“Linear algebra and its applications”. ISSN 0024-3795. 401 (2005) 381-391.0024-379510.1016/j.laa.2004.10.002info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:24:42Zoai:repositorium.sdum.uminho.pt:1822/1249Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:18:46.315767Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Diagonalizing triangular matrices via orthogonal Pierce decompositions
title Diagonalizing triangular matrices via orthogonal Pierce decompositions
spellingShingle Diagonalizing triangular matrices via orthogonal Pierce decompositions
Hartwig, Robert E.
Rings
Triangular matrices
Von Neumann regularity
Diagonalization
Science & Technology
title_short Diagonalizing triangular matrices via orthogonal Pierce decompositions
title_full Diagonalizing triangular matrices via orthogonal Pierce decompositions
title_fullStr Diagonalizing triangular matrices via orthogonal Pierce decompositions
title_full_unstemmed Diagonalizing triangular matrices via orthogonal Pierce decompositions
title_sort Diagonalizing triangular matrices via orthogonal Pierce decompositions
author Hartwig, Robert E.
author_facet Hartwig, Robert E.
Patrício, Pedro
Puystjens, Roland
author_role author
author2 Patrício, Pedro
Puystjens, Roland
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Hartwig, Robert E.
Patrício, Pedro
Puystjens, Roland
dc.subject.por.fl_str_mv Rings
Triangular matrices
Von Neumann regularity
Diagonalization
Science & Technology
topic Rings
Triangular matrices
Von Neumann regularity
Diagonalization
Science & Technology
description A class of sufficient conditions is given to ensure that the sum a+b in a ring R, is equivalent to a sum x + y, which is an orthogonal Pierce decomposition. This is then used to show that a lower triangular matrix, with a regular diagonal is equivalent to its diagonal iff the matrix admits a lower triangular von Neumann inverse.
publishDate 2005
dc.date.none.fl_str_mv 2005-05-15
2005-05-15T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/1249
url http://hdl.handle.net/1822/1249
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv “Linear algebra and its applications”. ISSN 0024-3795. 401 (2005) 381-391.
0024-3795
10.1016/j.laa.2004.10.002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132643714924544