Torsion theories and radicals in normal categories
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/4611 https://doi.org/10.1016/j.jalgebra.2005.09.030 |
Resumo: | We introduce a relativized notion of (semi)normalcy for categories that come equipped with a proper stable factorization system, and we use radicals (in the sense of module theory) and normal closure operators in order to study torsion theories in such categories. Our results generalize and complement recent studies in the realm of semi-abelian and, in part, homological categories. In particular, we characterize both, torsion-free and torsion classes, in terms of their closure under extensions. We pay particular attention to the homological and, for our purposes more importantly, normal categories of topological algebra, such as the category of topological groups. But our applications go far beyond the realm of these types of categories, as they include, for example, the normal, but non-homological category of pointed topological spaces, which is in fact a rich supplier for radicals of topological groups. |
id |
RCAP_9640b220e99bd57de9a5583a8bd56290 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/4611 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Torsion theories and radicals in normal categoriesWe introduce a relativized notion of (semi)normalcy for categories that come equipped with a proper stable factorization system, and we use radicals (in the sense of module theory) and normal closure operators in order to study torsion theories in such categories. Our results generalize and complement recent studies in the realm of semi-abelian and, in part, homological categories. In particular, we characterize both, torsion-free and torsion classes, in terms of their closure under extensions. We pay particular attention to the homological and, for our purposes more importantly, normal categories of topological algebra, such as the category of topological groups. But our applications go far beyond the realm of these types of categories, as they include, for example, the normal, but non-homological category of pointed topological spaces, which is in fact a rich supplier for radicals of topological groups.http://www.sciencedirect.com/science/article/B6WH2-4HK04RW-1/1/18b9f9a869360fcbae5bb6200eabdf202006info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4611http://hdl.handle.net/10316/4611https://doi.org/10.1016/j.jalgebra.2005.09.030engJournal of Algebra. 305:1 (2006) 98-129Clementino, M. M.Dikranjan, D.Tholen, W.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-11-04T09:43:42Zoai:estudogeral.uc.pt:10316/4611Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:46.898399Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Torsion theories and radicals in normal categories |
title |
Torsion theories and radicals in normal categories |
spellingShingle |
Torsion theories and radicals in normal categories Clementino, M. M. |
title_short |
Torsion theories and radicals in normal categories |
title_full |
Torsion theories and radicals in normal categories |
title_fullStr |
Torsion theories and radicals in normal categories |
title_full_unstemmed |
Torsion theories and radicals in normal categories |
title_sort |
Torsion theories and radicals in normal categories |
author |
Clementino, M. M. |
author_facet |
Clementino, M. M. Dikranjan, D. Tholen, W. |
author_role |
author |
author2 |
Dikranjan, D. Tholen, W. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Clementino, M. M. Dikranjan, D. Tholen, W. |
description |
We introduce a relativized notion of (semi)normalcy for categories that come equipped with a proper stable factorization system, and we use radicals (in the sense of module theory) and normal closure operators in order to study torsion theories in such categories. Our results generalize and complement recent studies in the realm of semi-abelian and, in part, homological categories. In particular, we characterize both, torsion-free and torsion classes, in terms of their closure under extensions. We pay particular attention to the homological and, for our purposes more importantly, normal categories of topological algebra, such as the category of topological groups. But our applications go far beyond the realm of these types of categories, as they include, for example, the normal, but non-homological category of pointed topological spaces, which is in fact a rich supplier for radicals of topological groups. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/4611 http://hdl.handle.net/10316/4611 https://doi.org/10.1016/j.jalgebra.2005.09.030 |
url |
http://hdl.handle.net/10316/4611 https://doi.org/10.1016/j.jalgebra.2005.09.030 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Algebra. 305:1 (2006) 98-129 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133898392731648 |