Torsion theories and radicals in normal categories

Detalhes bibliográficos
Autor(a) principal: Clementino, M. M.
Data de Publicação: 2006
Outros Autores: Dikranjan, D., Tholen, W.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/4611
https://doi.org/10.1016/j.jalgebra.2005.09.030
Resumo: We introduce a relativized notion of (semi)normalcy for categories that come equipped with a proper stable factorization system, and we use radicals (in the sense of module theory) and normal closure operators in order to study torsion theories in such categories. Our results generalize and complement recent studies in the realm of semi-abelian and, in part, homological categories. In particular, we characterize both, torsion-free and torsion classes, in terms of their closure under extensions. We pay particular attention to the homological and, for our purposes more importantly, normal categories of topological algebra, such as the category of topological groups. But our applications go far beyond the realm of these types of categories, as they include, for example, the normal, but non-homological category of pointed topological spaces, which is in fact a rich supplier for radicals of topological groups.
id RCAP_9640b220e99bd57de9a5583a8bd56290
oai_identifier_str oai:estudogeral.uc.pt:10316/4611
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Torsion theories and radicals in normal categoriesWe introduce a relativized notion of (semi)normalcy for categories that come equipped with a proper stable factorization system, and we use radicals (in the sense of module theory) and normal closure operators in order to study torsion theories in such categories. Our results generalize and complement recent studies in the realm of semi-abelian and, in part, homological categories. In particular, we characterize both, torsion-free and torsion classes, in terms of their closure under extensions. We pay particular attention to the homological and, for our purposes more importantly, normal categories of topological algebra, such as the category of topological groups. But our applications go far beyond the realm of these types of categories, as they include, for example, the normal, but non-homological category of pointed topological spaces, which is in fact a rich supplier for radicals of topological groups.http://www.sciencedirect.com/science/article/B6WH2-4HK04RW-1/1/18b9f9a869360fcbae5bb6200eabdf202006info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4611http://hdl.handle.net/10316/4611https://doi.org/10.1016/j.jalgebra.2005.09.030engJournal of Algebra. 305:1 (2006) 98-129Clementino, M. M.Dikranjan, D.Tholen, W.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-11-04T09:43:42Zoai:estudogeral.uc.pt:10316/4611Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:46.898399Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Torsion theories and radicals in normal categories
title Torsion theories and radicals in normal categories
spellingShingle Torsion theories and radicals in normal categories
Clementino, M. M.
title_short Torsion theories and radicals in normal categories
title_full Torsion theories and radicals in normal categories
title_fullStr Torsion theories and radicals in normal categories
title_full_unstemmed Torsion theories and radicals in normal categories
title_sort Torsion theories and radicals in normal categories
author Clementino, M. M.
author_facet Clementino, M. M.
Dikranjan, D.
Tholen, W.
author_role author
author2 Dikranjan, D.
Tholen, W.
author2_role author
author
dc.contributor.author.fl_str_mv Clementino, M. M.
Dikranjan, D.
Tholen, W.
description We introduce a relativized notion of (semi)normalcy for categories that come equipped with a proper stable factorization system, and we use radicals (in the sense of module theory) and normal closure operators in order to study torsion theories in such categories. Our results generalize and complement recent studies in the realm of semi-abelian and, in part, homological categories. In particular, we characterize both, torsion-free and torsion classes, in terms of their closure under extensions. We pay particular attention to the homological and, for our purposes more importantly, normal categories of topological algebra, such as the category of topological groups. But our applications go far beyond the realm of these types of categories, as they include, for example, the normal, but non-homological category of pointed topological spaces, which is in fact a rich supplier for radicals of topological groups.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/4611
http://hdl.handle.net/10316/4611
https://doi.org/10.1016/j.jalgebra.2005.09.030
url http://hdl.handle.net/10316/4611
https://doi.org/10.1016/j.jalgebra.2005.09.030
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Algebra. 305:1 (2006) 98-129
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133898392731648