Improved fully convolutional network with conditional random field for building extraction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/33652 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
id |
RCAP_9833d4fd82d51d4f97e4c67d1d83fe51 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/33652 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Improved fully convolutional network with conditional random field for building extractionBuilding ExtractionHigh Resolution Aerial ImageryDeep LearningDeep Convolutional Neural NetworkFully Convolutional NetworkConditional Random FieldDissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesBuilding extraction from remotely sensed imagery plays an important role in urban planning, disaster management, navigation, updating geographic databases and several other geospatial applications. Several published contributions are dedicated to the applications of Deep Convolutional Neural Network (DCNN) for building extraction using aerial/satellite imagery exists; however, in all these contributions a good accuracy is always paid at the price of extremely complex and large network architectures. In this paper, we present an enhanced Fully Convolutional Network (FCN) framework especially molded for building extraction of remotely sensed images by applying Conditional Random Field (CRF). The main purpose here is to propose a framework which balances maximum accuracy with less network complexity. The modern activation function called Exponential Linear Unit (ELU) is applied to improve the performance of the Fully Convolutional Network (FCN), resulting in more, yet accurate building prediction. To further reduce the noise (false classified buildings) and to sharpen the boundary of the buildings, a post processing CRF is added at the end of the adopted Convolutional Neural Network (CNN) framework. The experiments were conducted on Massachusetts building aerial imagery. The results show that our proposed framework outperformed FCN baseline, which is the existing baseline framework for semantic segmentation, in term of performance measure, the F1-score and Intersection Over Union (IoU) measure. Additionally, the proposed method stood superior to the pre-existing classifier for building extraction using the same dataset in terms of performance measure and network complexity at once.Vanneschi, LeonardoHillen, FlorianMuseros, LledóRUNShrestra, Sanjeevan2018-04-02T18:11:12Z2018-02-272018-02-27T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/33652TID:201892499enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:18:28Zoai:run.unl.pt:10362/33652Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:30:03.109068Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Improved fully convolutional network with conditional random field for building extraction |
title |
Improved fully convolutional network with conditional random field for building extraction |
spellingShingle |
Improved fully convolutional network with conditional random field for building extraction Shrestra, Sanjeevan Building Extraction High Resolution Aerial Imagery Deep Learning Deep Convolutional Neural Network Fully Convolutional Network Conditional Random Field |
title_short |
Improved fully convolutional network with conditional random field for building extraction |
title_full |
Improved fully convolutional network with conditional random field for building extraction |
title_fullStr |
Improved fully convolutional network with conditional random field for building extraction |
title_full_unstemmed |
Improved fully convolutional network with conditional random field for building extraction |
title_sort |
Improved fully convolutional network with conditional random field for building extraction |
author |
Shrestra, Sanjeevan |
author_facet |
Shrestra, Sanjeevan |
author_role |
author |
dc.contributor.none.fl_str_mv |
Vanneschi, Leonardo Hillen, Florian Museros, Lledó RUN |
dc.contributor.author.fl_str_mv |
Shrestra, Sanjeevan |
dc.subject.por.fl_str_mv |
Building Extraction High Resolution Aerial Imagery Deep Learning Deep Convolutional Neural Network Fully Convolutional Network Conditional Random Field |
topic |
Building Extraction High Resolution Aerial Imagery Deep Learning Deep Convolutional Neural Network Fully Convolutional Network Conditional Random Field |
description |
Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial Technologies |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-02T18:11:12Z 2018-02-27 2018-02-27T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/33652 TID:201892499 |
url |
http://hdl.handle.net/10362/33652 |
identifier_str_mv |
TID:201892499 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137924646699008 |