Survival mixture models in behavioral scoring

Detalhes bibliográficos
Autor(a) principal: Alves, B. C.
Data de Publicação: 2015
Outros Autores: Dias, J. G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/9389
Resumo: This paper introduces a general framework of survival mixture models (SMMs) that addresses the unobserved heterogeneity of the credit risk of a financial institution's clients. This new behavioral scoring framework contains the specific cases of aggregate and immune fraction models. This general methodology identifies clusters or groups of clients with different risk patterns. The parameters of the model can be explained by independent variables in a regression setting. The application shows the different risk trajectories of clients. Specifically, the time between the first delayed payment and default was best modeled by a three-segment log-normal mixture distribution and a multinomial logit link function. Each segment contains clients with similar risk profiles. The model predicts the most likely risk segment for each new client.
id RCAP_99ea63904e2d66442657a2a0305a4202
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/9389
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Survival mixture models in behavioral scoringCredit riskBehavioral scoringSurvival analysisMixture modelsThis paper introduces a general framework of survival mixture models (SMMs) that addresses the unobserved heterogeneity of the credit risk of a financial institution's clients. This new behavioral scoring framework contains the specific cases of aggregate and immune fraction models. This general methodology identifies clusters or groups of clients with different risk patterns. The parameters of the model can be explained by independent variables in a regression setting. The application shows the different risk trajectories of clients. Specifically, the time between the first delayed payment and default was best modeled by a three-segment log-normal mixture distribution and a multinomial logit link function. Each segment contains clients with similar risk profiles. The model predicts the most likely risk segment for each new client.Pergamon/Elsevier2015-07-21T16:11:29Z2015-01-01T00:00:00Z20152019-05-07T11:29:02Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/9389eng0957-417410.1016/j.eswa.2014.12.036Alves, B. C.Dias, J. G.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:28:26Zoai:repositorio.iscte-iul.pt:10071/9389Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:12:45.087940Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Survival mixture models in behavioral scoring
title Survival mixture models in behavioral scoring
spellingShingle Survival mixture models in behavioral scoring
Alves, B. C.
Credit risk
Behavioral scoring
Survival analysis
Mixture models
title_short Survival mixture models in behavioral scoring
title_full Survival mixture models in behavioral scoring
title_fullStr Survival mixture models in behavioral scoring
title_full_unstemmed Survival mixture models in behavioral scoring
title_sort Survival mixture models in behavioral scoring
author Alves, B. C.
author_facet Alves, B. C.
Dias, J. G.
author_role author
author2 Dias, J. G.
author2_role author
dc.contributor.author.fl_str_mv Alves, B. C.
Dias, J. G.
dc.subject.por.fl_str_mv Credit risk
Behavioral scoring
Survival analysis
Mixture models
topic Credit risk
Behavioral scoring
Survival analysis
Mixture models
description This paper introduces a general framework of survival mixture models (SMMs) that addresses the unobserved heterogeneity of the credit risk of a financial institution's clients. This new behavioral scoring framework contains the specific cases of aggregate and immune fraction models. This general methodology identifies clusters or groups of clients with different risk patterns. The parameters of the model can be explained by independent variables in a regression setting. The application shows the different risk trajectories of clients. Specifically, the time between the first delayed payment and default was best modeled by a three-segment log-normal mixture distribution and a multinomial logit link function. Each segment contains clients with similar risk profiles. The model predicts the most likely risk segment for each new client.
publishDate 2015
dc.date.none.fl_str_mv 2015-07-21T16:11:29Z
2015-01-01T00:00:00Z
2015
2019-05-07T11:29:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/9389
url http://hdl.handle.net/10071/9389
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0957-4174
10.1016/j.eswa.2014.12.036
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pergamon/Elsevier
publisher.none.fl_str_mv Pergamon/Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134683270742016