Survival mixture models in behavioral scoring
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/9389 |
Resumo: | This paper introduces a general framework of survival mixture models (SMMs) that addresses the unobserved heterogeneity of the credit risk of a financial institution's clients. This new behavioral scoring framework contains the specific cases of aggregate and immune fraction models. This general methodology identifies clusters or groups of clients with different risk patterns. The parameters of the model can be explained by independent variables in a regression setting. The application shows the different risk trajectories of clients. Specifically, the time between the first delayed payment and default was best modeled by a three-segment log-normal mixture distribution and a multinomial logit link function. Each segment contains clients with similar risk profiles. The model predicts the most likely risk segment for each new client. |
id |
RCAP_99ea63904e2d66442657a2a0305a4202 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/9389 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Survival mixture models in behavioral scoringCredit riskBehavioral scoringSurvival analysisMixture modelsThis paper introduces a general framework of survival mixture models (SMMs) that addresses the unobserved heterogeneity of the credit risk of a financial institution's clients. This new behavioral scoring framework contains the specific cases of aggregate and immune fraction models. This general methodology identifies clusters or groups of clients with different risk patterns. The parameters of the model can be explained by independent variables in a regression setting. The application shows the different risk trajectories of clients. Specifically, the time between the first delayed payment and default was best modeled by a three-segment log-normal mixture distribution and a multinomial logit link function. Each segment contains clients with similar risk profiles. The model predicts the most likely risk segment for each new client.Pergamon/Elsevier2015-07-21T16:11:29Z2015-01-01T00:00:00Z20152019-05-07T11:29:02Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/9389eng0957-417410.1016/j.eswa.2014.12.036Alves, B. C.Dias, J. G.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:28:26Zoai:repositorio.iscte-iul.pt:10071/9389Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:12:45.087940Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Survival mixture models in behavioral scoring |
title |
Survival mixture models in behavioral scoring |
spellingShingle |
Survival mixture models in behavioral scoring Alves, B. C. Credit risk Behavioral scoring Survival analysis Mixture models |
title_short |
Survival mixture models in behavioral scoring |
title_full |
Survival mixture models in behavioral scoring |
title_fullStr |
Survival mixture models in behavioral scoring |
title_full_unstemmed |
Survival mixture models in behavioral scoring |
title_sort |
Survival mixture models in behavioral scoring |
author |
Alves, B. C. |
author_facet |
Alves, B. C. Dias, J. G. |
author_role |
author |
author2 |
Dias, J. G. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Alves, B. C. Dias, J. G. |
dc.subject.por.fl_str_mv |
Credit risk Behavioral scoring Survival analysis Mixture models |
topic |
Credit risk Behavioral scoring Survival analysis Mixture models |
description |
This paper introduces a general framework of survival mixture models (SMMs) that addresses the unobserved heterogeneity of the credit risk of a financial institution's clients. This new behavioral scoring framework contains the specific cases of aggregate and immune fraction models. This general methodology identifies clusters or groups of clients with different risk patterns. The parameters of the model can be explained by independent variables in a regression setting. The application shows the different risk trajectories of clients. Specifically, the time between the first delayed payment and default was best modeled by a three-segment log-normal mixture distribution and a multinomial logit link function. Each segment contains clients with similar risk profiles. The model predicts the most likely risk segment for each new client. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07-21T16:11:29Z 2015-01-01T00:00:00Z 2015 2019-05-07T11:29:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/9389 |
url |
http://hdl.handle.net/10071/9389 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0957-4174 10.1016/j.eswa.2014.12.036 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon/Elsevier |
publisher.none.fl_str_mv |
Pergamon/Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134683270742016 |