A Study of Generalization and Fitness Landscapes for Neuroevolution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/100685 |
Resumo: | Rodrigues, N. M., Silva, S., & Vanneschi, L. (2020). A Study of Generalization and Fitness Landscapes for Neuroevolution. IEEE Access, 8, 108216-108234. [9113453]. https://doi.org/10.1109/ACCESS.2020.3001505 |
id |
RCAP_9a79c73295f954f0c8540c778bd8b67a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/100685 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Study of Generalization and Fitness Landscapes for NeuroevolutionAutocorrelationconvolutional neural networksdensity cloudsentropic measure of ruggednessfitness cloudsfitness landscapesgeneralizationneuroevolutionoverfittingComputer Science(all)Materials Science(all)Engineering(all)Rodrigues, N. M., Silva, S., & Vanneschi, L. (2020). A Study of Generalization and Fitness Landscapes for Neuroevolution. IEEE Access, 8, 108216-108234. [9113453]. https://doi.org/10.1109/ACCESS.2020.3001505Fitness landscapes are a useful concept for studying the dynamics of meta-heuristics. In the last two decades, they have been successfully used for estimating the optimization capabilities of different flavors of evolutionary algorithms, including genetic algorithms and genetic programming. However, so far they have not been used for studying the performance of machine learning algorithms on unseen data, and they have not been applied to studying neuroevolution landscapes. This paper fills these gaps by applying fitness landscapes to neuroevolution, and using this concept to infer useful information about the learning and generalization ability of the machine learning method. For this task, we use a grammar-based approach to generate convolutional neural networks, and we study the dynamics of three different mutations used to evolve them. To characterize fitness landscapes, we study autocorrelation, entropic measure of ruggedness, and fitness clouds. Also, we propose the use of two additional evaluation measures: density clouds and overfitting measure. The results show that these measures are appropriate for estimating both the learning and the generalization ability of the considered neuroevolution configurations.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNRodrigues, Nuno M.Silva, SaraVanneschi, Leonardo2020-07-10T22:22:19Z2020-06-222020-06-22T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article19application/pdfhttp://hdl.handle.net/10362/100685engPURE: 18961711https://doi.org/10.1109/ACCESS.2020.3001505info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:47:04Zoai:run.unl.pt:10362/100685Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:39:24.733396Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Study of Generalization and Fitness Landscapes for Neuroevolution |
title |
A Study of Generalization and Fitness Landscapes for Neuroevolution |
spellingShingle |
A Study of Generalization and Fitness Landscapes for Neuroevolution Rodrigues, Nuno M. Autocorrelation convolutional neural networks density clouds entropic measure of ruggedness fitness clouds fitness landscapes generalization neuroevolution overfitting Computer Science(all) Materials Science(all) Engineering(all) |
title_short |
A Study of Generalization and Fitness Landscapes for Neuroevolution |
title_full |
A Study of Generalization and Fitness Landscapes for Neuroevolution |
title_fullStr |
A Study of Generalization and Fitness Landscapes for Neuroevolution |
title_full_unstemmed |
A Study of Generalization and Fitness Landscapes for Neuroevolution |
title_sort |
A Study of Generalization and Fitness Landscapes for Neuroevolution |
author |
Rodrigues, Nuno M. |
author_facet |
Rodrigues, Nuno M. Silva, Sara Vanneschi, Leonardo |
author_role |
author |
author2 |
Silva, Sara Vanneschi, Leonardo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Rodrigues, Nuno M. Silva, Sara Vanneschi, Leonardo |
dc.subject.por.fl_str_mv |
Autocorrelation convolutional neural networks density clouds entropic measure of ruggedness fitness clouds fitness landscapes generalization neuroevolution overfitting Computer Science(all) Materials Science(all) Engineering(all) |
topic |
Autocorrelation convolutional neural networks density clouds entropic measure of ruggedness fitness clouds fitness landscapes generalization neuroevolution overfitting Computer Science(all) Materials Science(all) Engineering(all) |
description |
Rodrigues, N. M., Silva, S., & Vanneschi, L. (2020). A Study of Generalization and Fitness Landscapes for Neuroevolution. IEEE Access, 8, 108216-108234. [9113453]. https://doi.org/10.1109/ACCESS.2020.3001505 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-10T22:22:19Z 2020-06-22 2020-06-22T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/100685 |
url |
http://hdl.handle.net/10362/100685 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PURE: 18961711 https://doi.org/10.1109/ACCESS.2020.3001505 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
19 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138009970376704 |