Churn Prediction in Online Newspaper Subscriptions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/148914 |
Resumo: | Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_c6e5ccd9abebe1a3608b547a6286987a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/148914 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Churn Prediction in Online Newspaper SubscriptionsChurn PredictionClassificationData MiningInterpretabilityOnline SubscriptionsMachine LearningDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoProject Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceIn today's connected world, people turn more to the web to be informed of the news. Newspapers in an online environment profit from employing subscription models. Despite that Portugal remains one of the countries with higher levels of trust in news, readers present a low propensity to subscribe. Hence, online newspapers' existing customers are a valuable asset. Therefore, it is in the best interest of such businesses to monitor these customers to identify potential churn signs down the line. Customer churn prediction models aim to identify customers most prone to attrite, allowing businesses that leverage them to improve their customer retention campaigns' efficiency and reduce costs associated with churn. Two different research approaches, namely prediction power and comprehensibility, have been at the core of churn prediction literature. Businesses need accurate models to target customers' right subset. However, many models are black-boxes and present reduced interpretability. On the other hand, understanding what drives customers to churn can support managers in making better-informed decisions. This project report presents the development of a plan to tackle churn prediction in a Portuguese newspaper with an online subscription model using Machine Learning methods. The models' performance was evaluated in two experiments. One experiment assessed the performance for all types of subscriptions and another considered only non-recurring subscriptions. The results of the first experiment were tempered by an unplanned marketing campaign that run simultaneously with the experiment on top of the contrasting contexts in which the model was trained and evaluated. On the other hand, the second experiment's results suggest that for non-recurring subscriptions, a phone call from the call centre proved to be an adequate retention measure for probable churning subscribers. Additionally, models' predictors were analysed and it was found that users with lower fidelity rates and few subscriptions present a higher propensity to cancel their subscriptions. The same occurs with users whose product is annual or longer-lasting. These findings shed light on how to minimize churn and improve reader engagement. Based on the models' results, and predictors' analysis, the newspaper decided to implement a re-engagement newsletter to keep users engaged and prevent future churn.António, Nuno Miguel da ConceiçãoFernandes, Elizabeth SilvaRUNBelchior, Lúcia Madeira2023-02-09T14:36:38Z2023-01-242023-01-24T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/148914TID:203219171enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:30:41Zoai:run.unl.pt:10362/148914Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:33.076054Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Churn Prediction in Online Newspaper Subscriptions |
title |
Churn Prediction in Online Newspaper Subscriptions |
spellingShingle |
Churn Prediction in Online Newspaper Subscriptions Belchior, Lúcia Madeira Churn Prediction Classification Data Mining Interpretability Online Subscriptions Machine Learning Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Churn Prediction in Online Newspaper Subscriptions |
title_full |
Churn Prediction in Online Newspaper Subscriptions |
title_fullStr |
Churn Prediction in Online Newspaper Subscriptions |
title_full_unstemmed |
Churn Prediction in Online Newspaper Subscriptions |
title_sort |
Churn Prediction in Online Newspaper Subscriptions |
author |
Belchior, Lúcia Madeira |
author_facet |
Belchior, Lúcia Madeira |
author_role |
author |
dc.contributor.none.fl_str_mv |
António, Nuno Miguel da Conceição Fernandes, Elizabeth Silva RUN |
dc.contributor.author.fl_str_mv |
Belchior, Lúcia Madeira |
dc.subject.por.fl_str_mv |
Churn Prediction Classification Data Mining Interpretability Online Subscriptions Machine Learning Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Churn Prediction Classification Data Mining Interpretability Online Subscriptions Machine Learning Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Project Work presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02-09T14:36:38Z 2023-01-24 2023-01-24T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/148914 TID:203219171 |
url |
http://hdl.handle.net/10362/148914 |
identifier_str_mv |
TID:203219171 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138125984825344 |