Segmentação de imagens de elastografia mamária

Detalhes bibliográficos
Autor(a) principal: Beja, Pedro Filipe Hortelão
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/6788
Resumo: Na imagiologia dos dias de hoje, a elastografia é uma técnica bastante promissora para a deteção do cancro da mama. Apesar de ainda ser pouco utilizada, esta técnica representa resultados ainda mais promissores quando combinados com a ecografia, pois permite reduzir o número de biopsias desnecessárias, ter uma maior segurança nos diagnósticos das lesões, a nível de sensibilidade, especificidade e acurácia, evita que os pacientes passem por radiação ionizante e os custos são bem menores quando comparados com outras técnicas. Este trabalho visa a caraterização dos contornos das lesões da mama, onde o contorno representa mais um fator de avaliação das imagens de elastografia. Experimentam-se vários algoritmos de segmentação a imagens de elastografia a cores e com base nos resultados é selecionado o Elasto Region. Na primeira parte do algoritmo é adicionado um pré-processamento de imagem através de operadores morfológicos por forma a isolar a lesão. Na segunda parte é aplicado o contorno ativo sem bordas para delimitar a lesão pretendida. São comparados os resultados finais obtidos de forma semi-automática com o Elasto Region, com os contornos delimitados manualmente por um médico especialista, através da razão de superposição. Das 104 imagens de elastografia a cores recolhidas obtém-se 37% das lesões utilizando a escala de cor RGB e 29% utilizando a escala HSV. Tendo em conta que a razão de superposição funciona quando os contornos são fechados, retira-se o número de imagens que o algoritmo não conseguiu obter um contorno fechado, assim utilizando 83 imagens na escala RGB temos 45% e com 63 imagens na escala HSV obtém-se 46%. Desta forma passa-se a conhecer o desempenho do algoritmo e pode-se concluir que é necessário ramificar o algoritmo para vários grupos de imagens. Pois diversos grupos de imagens requerem diferentes pré-processamentos.
id RCAP_a95bd8c22574c09149fae938e4ef01eb
oai_identifier_str oai:sapientia.ualg.pt:10400.1/6788
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Segmentação de imagens de elastografia mamáriaDiagnóstico instrumentalImagiologiaCancro da mamaEcografiaNa imagiologia dos dias de hoje, a elastografia é uma técnica bastante promissora para a deteção do cancro da mama. Apesar de ainda ser pouco utilizada, esta técnica representa resultados ainda mais promissores quando combinados com a ecografia, pois permite reduzir o número de biopsias desnecessárias, ter uma maior segurança nos diagnósticos das lesões, a nível de sensibilidade, especificidade e acurácia, evita que os pacientes passem por radiação ionizante e os custos são bem menores quando comparados com outras técnicas. Este trabalho visa a caraterização dos contornos das lesões da mama, onde o contorno representa mais um fator de avaliação das imagens de elastografia. Experimentam-se vários algoritmos de segmentação a imagens de elastografia a cores e com base nos resultados é selecionado o Elasto Region. Na primeira parte do algoritmo é adicionado um pré-processamento de imagem através de operadores morfológicos por forma a isolar a lesão. Na segunda parte é aplicado o contorno ativo sem bordas para delimitar a lesão pretendida. São comparados os resultados finais obtidos de forma semi-automática com o Elasto Region, com os contornos delimitados manualmente por um médico especialista, através da razão de superposição. Das 104 imagens de elastografia a cores recolhidas obtém-se 37% das lesões utilizando a escala de cor RGB e 29% utilizando a escala HSV. Tendo em conta que a razão de superposição funciona quando os contornos são fechados, retira-se o número de imagens que o algoritmo não conseguiu obter um contorno fechado, assim utilizando 83 imagens na escala RGB temos 45% e com 63 imagens na escala HSV obtém-se 46%. Desta forma passa-se a conhecer o desempenho do algoritmo e pode-se concluir que é necessário ramificar o algoritmo para vários grupos de imagens. Pois diversos grupos de imagens requerem diferentes pré-processamentos.Leiria, IsabelPereira, WagnerSapientiaBeja, Pedro Filipe Hortelão2015-09-17T13:56:49Z201320132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfhttp://hdl.handle.net/10400.1/6788porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-29T10:37:21Zoai:sapientia.ualg.pt:10400.1/6788Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-29T10:37:21Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Segmentação de imagens de elastografia mamária
title Segmentação de imagens de elastografia mamária
spellingShingle Segmentação de imagens de elastografia mamária
Beja, Pedro Filipe Hortelão
Diagnóstico instrumental
Imagiologia
Cancro da mama
Ecografia
title_short Segmentação de imagens de elastografia mamária
title_full Segmentação de imagens de elastografia mamária
title_fullStr Segmentação de imagens de elastografia mamária
title_full_unstemmed Segmentação de imagens de elastografia mamária
title_sort Segmentação de imagens de elastografia mamária
author Beja, Pedro Filipe Hortelão
author_facet Beja, Pedro Filipe Hortelão
author_role author
dc.contributor.none.fl_str_mv Leiria, Isabel
Pereira, Wagner
Sapientia
dc.contributor.author.fl_str_mv Beja, Pedro Filipe Hortelão
dc.subject.por.fl_str_mv Diagnóstico instrumental
Imagiologia
Cancro da mama
Ecografia
topic Diagnóstico instrumental
Imagiologia
Cancro da mama
Ecografia
description Na imagiologia dos dias de hoje, a elastografia é uma técnica bastante promissora para a deteção do cancro da mama. Apesar de ainda ser pouco utilizada, esta técnica representa resultados ainda mais promissores quando combinados com a ecografia, pois permite reduzir o número de biopsias desnecessárias, ter uma maior segurança nos diagnósticos das lesões, a nível de sensibilidade, especificidade e acurácia, evita que os pacientes passem por radiação ionizante e os custos são bem menores quando comparados com outras técnicas. Este trabalho visa a caraterização dos contornos das lesões da mama, onde o contorno representa mais um fator de avaliação das imagens de elastografia. Experimentam-se vários algoritmos de segmentação a imagens de elastografia a cores e com base nos resultados é selecionado o Elasto Region. Na primeira parte do algoritmo é adicionado um pré-processamento de imagem através de operadores morfológicos por forma a isolar a lesão. Na segunda parte é aplicado o contorno ativo sem bordas para delimitar a lesão pretendida. São comparados os resultados finais obtidos de forma semi-automática com o Elasto Region, com os contornos delimitados manualmente por um médico especialista, através da razão de superposição. Das 104 imagens de elastografia a cores recolhidas obtém-se 37% das lesões utilizando a escala de cor RGB e 29% utilizando a escala HSV. Tendo em conta que a razão de superposição funciona quando os contornos são fechados, retira-se o número de imagens que o algoritmo não conseguiu obter um contorno fechado, assim utilizando 83 imagens na escala RGB temos 45% e com 63 imagens na escala HSV obtém-se 46%. Desta forma passa-se a conhecer o desempenho do algoritmo e pode-se concluir que é necessário ramificar o algoritmo para vários grupos de imagens. Pois diversos grupos de imagens requerem diferentes pré-processamentos.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013
2013-01-01T00:00:00Z
2015-09-17T13:56:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/6788
url http://hdl.handle.net/10400.1/6788
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817549760345669632