Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/132977 |
Resumo: | UIDB/00066/2020 POCI-01-0247-FEDER-034072 |
id |
RCAP_a9b60ee023b0965b5d0fa1725295fdc2 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/132977 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learningdeep learningQuality inspectionsimulationstructural adhesivesynthetic dataComputer Science(all)Materials Science(all)Engineering(all)UIDB/00066/2020 POCI-01-0247-FEDER-034072The advent of Industry 4.0 has shown the tremendous transformative potential of combining artificial intelligence, cyber-physical systems and Internet of Things concepts in industrial settings. Despite this, data availability is still a major roadblock for the successful adoption of data-driven solutions, particularly concerning deep learning approaches in manufacturing. Specifically in the quality control domain, annotated defect data can often be costly, time-consuming and inefficient to obtain, potentially compromising the viability of deep learning approaches due to data scarcity. In this context, we propose a novel method for generating annotated synthetic training data for automated quality inspections of structural adhesive applications, validated in an industrial cell for automotive parts. Our approach greatly reduces the cost of training deep learning models for this task, while simultaneously improving their performance in a scarce manufacturing data context with imbalanced training sets by 3.1% (mAP@0.50). Additional results can be seen at https://ricardosperes.github.io/simulation-synth-adhesive/.DEE - Departamento de Engenharia Electrotécnica e de ComputadoresUNINOVA-Instituto de Desenvolvimento de Novas TecnologiasCTS - Centro de Tecnologia e SistemasDEE2010-C2 Robótica e Manufactura Integrada por ComputadorRUNPeres, Ricardo SilvaGuedes, MagnoMiranda, FabioBarata, José2022-02-15T23:36:07Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10application/pdfhttp://hdl.handle.net/10362/132977engPURE: 36678917https://doi.org/10.1109/ACCESS.2021.3082690info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:11:38Zoai:run.unl.pt:10362/132977Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:47:39.105393Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learning |
title |
Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learning |
spellingShingle |
Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learning Peres, Ricardo Silva deep learning Quality inspection simulation structural adhesive synthetic data Computer Science(all) Materials Science(all) Engineering(all) |
title_short |
Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learning |
title_full |
Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learning |
title_fullStr |
Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learning |
title_full_unstemmed |
Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learning |
title_sort |
Simulation-Based Data Augmentation for the Quality Inspection of Structural Adhesive with Deep Learning |
author |
Peres, Ricardo Silva |
author_facet |
Peres, Ricardo Silva Guedes, Magno Miranda, Fabio Barata, José |
author_role |
author |
author2 |
Guedes, Magno Miranda, Fabio Barata, José |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
DEE - Departamento de Engenharia Electrotécnica e de Computadores UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias CTS - Centro de Tecnologia e Sistemas DEE2010-C2 Robótica e Manufactura Integrada por Computador RUN |
dc.contributor.author.fl_str_mv |
Peres, Ricardo Silva Guedes, Magno Miranda, Fabio Barata, José |
dc.subject.por.fl_str_mv |
deep learning Quality inspection simulation structural adhesive synthetic data Computer Science(all) Materials Science(all) Engineering(all) |
topic |
deep learning Quality inspection simulation structural adhesive synthetic data Computer Science(all) Materials Science(all) Engineering(all) |
description |
UIDB/00066/2020 POCI-01-0247-FEDER-034072 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z 2022-02-15T23:36:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/132977 |
url |
http://hdl.handle.net/10362/132977 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PURE: 36678917 https://doi.org/10.1109/ACCESS.2021.3082690 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
10 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138079438536704 |