Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/134350 |
Resumo: | UIDB/50025/2020-202 DFA/BD/8335/2020 No. PTDC/NAN-MAT/30812/2017 Grant Nos. EP/M006727/1 EP/S000259/1 |
id |
RCAP_753e752a9bf61c37825441ca14b69746 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/134350 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networksMaterials Science(all)Engineering(all)UIDB/50025/2020-202 DFA/BD/8335/2020 No. PTDC/NAN-MAT/30812/2017 Grant Nos. EP/M006727/1 EP/S000259/1Neuromorphic computation based on resistive switching devices represents a relevant hardware alternative for artificial deep neural networks. For the highest accuracies on pattern recognition tasks, an analog, linear, and symmetric synaptic weight is essential. Moreover, the resistive switching devices should be integrated with the supporting electronics, such as thin-film transistors (TFTs), to solve crosstalk issues on the crossbar arrays. Here, an a-Indium-gallium-zinc-oxide (IGZO) memristor is proposed, with Mo and Ti/Mo as bottom and top contacts, with forming-free analog switching ability for an upcoming integration on crossbar arrays with a-IGZO TFTs for neuromorphic hardware systems. The development of a TFT compatible fabrication process is accomplished, which results in an a-IGZO memristor with a high stability and low cycle-to-cycle variability. The synaptic behavior through potentiation and depression tests using an identical spiking scheme is presented, and the modulation of the plasticity characteristics by applying non-identical spiking schemes is also demonstrated. The pattern recognition accuracy, using MNIST handwritten digits dataset, reveals a maximum of 91.82% accuracy, which is a promising result for crossbar implementation. The results displayed here reveal the potential of Mo/a-IGZO/Ti/Mo memristors for neuromorphic hardware.DCM - Departamento de Ciência dos MateriaisCENIMAT-i3N - Centro de Investigação de Materiais (Lab. Associado I3N)UNINOVA-Instituto de Desenvolvimento de Novas TecnologiasRUNPereira, Maria EliasDeuermeier, JonasFreitas, PedroBarquinha, PedroZhang, WeidongMartins, RodrigoFortunato, ElviraKiazadeh, Asal2022-03-11T23:22:49Z2022-01-012022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/134350eng2166-532XPURE: 41739352https://doi.org/10.1063/5.0073056info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:12:49Zoai:run.unl.pt:10362/134350Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:48:04.548910Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks |
title |
Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks |
spellingShingle |
Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks Pereira, Maria Elias Materials Science(all) Engineering(all) |
title_short |
Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks |
title_full |
Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks |
title_fullStr |
Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks |
title_full_unstemmed |
Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks |
title_sort |
Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks |
author |
Pereira, Maria Elias |
author_facet |
Pereira, Maria Elias Deuermeier, Jonas Freitas, Pedro Barquinha, Pedro Zhang, Weidong Martins, Rodrigo Fortunato, Elvira Kiazadeh, Asal |
author_role |
author |
author2 |
Deuermeier, Jonas Freitas, Pedro Barquinha, Pedro Zhang, Weidong Martins, Rodrigo Fortunato, Elvira Kiazadeh, Asal |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
DCM - Departamento de Ciência dos Materiais CENIMAT-i3N - Centro de Investigação de Materiais (Lab. Associado I3N) UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias RUN |
dc.contributor.author.fl_str_mv |
Pereira, Maria Elias Deuermeier, Jonas Freitas, Pedro Barquinha, Pedro Zhang, Weidong Martins, Rodrigo Fortunato, Elvira Kiazadeh, Asal |
dc.subject.por.fl_str_mv |
Materials Science(all) Engineering(all) |
topic |
Materials Science(all) Engineering(all) |
description |
UIDB/50025/2020-202 DFA/BD/8335/2020 No. PTDC/NAN-MAT/30812/2017 Grant Nos. EP/M006727/1 EP/S000259/1 |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-11T23:22:49Z 2022-01-01 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/134350 |
url |
http://hdl.handle.net/10362/134350 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2166-532X PURE: 41739352 https://doi.org/10.1063/5.0073056 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138082395521024 |