Predicting fraud behaviour in online betting
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/59929 |
Resumo: | Project Work presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Information Analysis and Management |
id |
RCAP_b0baf44db6b04a95c1687b4d1f69bd46 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/59929 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting fraud behaviour in online bettingOnline FraudBetting MarketData MiningMachine LearningPortugalProject Work presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Information Analysis and ManagementFraud isn’t a new issue, there are discussions about this matter since the beginning of commerce. With the advance of the Internet this technique gained strain and became a billion-dollar business. There are many different types of online financial fraud: account takeover; identity theft; chargeback; credit card transactions; etc. Online betting is one of the markets where fraud is increasing every day. In Portugal, the regulation of gambling and online betting was approved in April 2015. In one hand, this legislation made possible the exploration of this business in a controlled and regulated environment, but on the other hand it encouraged customers to develop new ways of fraud. Traditional data analysis used to detect fraud involved different domains such as economics, finance and law. The complexity of these investigations soon became obsolete. Being fraud an adaptive crime, different areas such as Data Mining and Machine Learning were developed to identify and prevent fraud. The main goal of this Project is to develop a predicting model, using a data mining approach and machine learning methods, able to identify and prevent online financial fraud on the Portuguese Betting Market, a new but already strong business.Henriques, Roberto André PereiraRUNTedim, Margarida de Sousa2019-02-08T14:42:50Z2019-01-182019-01-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/59929TID:202167518enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:28:44Zoai:run.unl.pt:10362/59929Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:33:27.315994Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting fraud behaviour in online betting |
title |
Predicting fraud behaviour in online betting |
spellingShingle |
Predicting fraud behaviour in online betting Tedim, Margarida de Sousa Online Fraud Betting Market Data Mining Machine Learning Portugal |
title_short |
Predicting fraud behaviour in online betting |
title_full |
Predicting fraud behaviour in online betting |
title_fullStr |
Predicting fraud behaviour in online betting |
title_full_unstemmed |
Predicting fraud behaviour in online betting |
title_sort |
Predicting fraud behaviour in online betting |
author |
Tedim, Margarida de Sousa |
author_facet |
Tedim, Margarida de Sousa |
author_role |
author |
dc.contributor.none.fl_str_mv |
Henriques, Roberto André Pereira RUN |
dc.contributor.author.fl_str_mv |
Tedim, Margarida de Sousa |
dc.subject.por.fl_str_mv |
Online Fraud Betting Market Data Mining Machine Learning Portugal |
topic |
Online Fraud Betting Market Data Mining Machine Learning Portugal |
description |
Project Work presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Information Analysis and Management |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02-08T14:42:50Z 2019-01-18 2019-01-18T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/59929 TID:202167518 |
url |
http://hdl.handle.net/10362/59929 |
identifier_str_mv |
TID:202167518 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137956654481408 |