Coastal morphodynamic emulator for early warning short-term forecasts
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/86779 |
Resumo: | Data will be made available on request. Deep learning model for XBeach morphodynamic emulation: https://www.hydroshare.org/resource/b4ae97df748842a1800816b32a3d640b/ (Original data) (HydroShare) |
id |
RCAP_b36857021e378c1870cc187b72432a3f |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/86779 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Coastal morphodynamic emulator for early warning short-term forecastsDeep learningHydrodynamicsMorphodynamicsNumerical model emulatorTensorflowXBeachEngenharia e Tecnologia::Engenharia CivilData will be made available on request. Deep learning model for XBeach morphodynamic emulation: https://www.hydroshare.org/resource/b4ae97df748842a1800816b32a3d640b/ (Original data) (HydroShare)The use of numerical models to anticipate the effects of floods and storms in coastal regions is essential to mitigate the damages of these natural disasters. However, local studies require high spatial and temporal resolution numerical models, limiting their use due to the involved high computational costs. This constraint becomes even more critical when these models are used for real-time monitoring and warning systems. Therefore, the objective of this paper was to reduce the computational time of coastal morphodynamic models simulations by implementing a deep learning emulator. The emulator performance was evaluated using different scenarios run with the XBeach software, which considered different grid resolutions and the effects of a storm event in the morphodynamic patterns around a breakwater and a groin. The morphodynamic simulation time was reduced by 23%, and it was identified that the major restriction to reducing the computational cost was the hydrodynamic numerical model simulation.This research was supported by the Doctoral Grant SFRH/BD/151383/2021 financed by the Portuguese Foundation for Science and Technology (FCT), and with funds from the Ministry of Science, Technology and Higher Education, under the MIT Portugal Program. I. Iglesias also acknowledge the FCT financing through the CEEC program (2022.07420. CEECIND).Elsevier Science BVUniversidade do MinhoWeber de Melo, WillianPinho, José L. S.Iglesias, Isabel2023-072023-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/86779engWeber de Melo, W., Pinho, J., & Iglesias, I. (2023, July). Coastal morphodynamic emulator for early warning short-term forecasts. Environmental Modelling & Software. Elsevier BV. http://doi.org/10.1016/j.envsoft.2023.1057291364-8152cv-prod-335954510.1016/j.envsoft.2023.105729https://www.sciencedirect.com/science/article/pii/S1364815223001159info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-14T01:20:14Zoai:repositorium.sdum.uminho.pt:1822/86779Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:35:25.466536Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Coastal morphodynamic emulator for early warning short-term forecasts |
title |
Coastal morphodynamic emulator for early warning short-term forecasts |
spellingShingle |
Coastal morphodynamic emulator for early warning short-term forecasts Weber de Melo, Willian Deep learning Hydrodynamics Morphodynamics Numerical model emulator Tensorflow XBeach Engenharia e Tecnologia::Engenharia Civil |
title_short |
Coastal morphodynamic emulator for early warning short-term forecasts |
title_full |
Coastal morphodynamic emulator for early warning short-term forecasts |
title_fullStr |
Coastal morphodynamic emulator for early warning short-term forecasts |
title_full_unstemmed |
Coastal morphodynamic emulator for early warning short-term forecasts |
title_sort |
Coastal morphodynamic emulator for early warning short-term forecasts |
author |
Weber de Melo, Willian |
author_facet |
Weber de Melo, Willian Pinho, José L. S. Iglesias, Isabel |
author_role |
author |
author2 |
Pinho, José L. S. Iglesias, Isabel |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Weber de Melo, Willian Pinho, José L. S. Iglesias, Isabel |
dc.subject.por.fl_str_mv |
Deep learning Hydrodynamics Morphodynamics Numerical model emulator Tensorflow XBeach Engenharia e Tecnologia::Engenharia Civil |
topic |
Deep learning Hydrodynamics Morphodynamics Numerical model emulator Tensorflow XBeach Engenharia e Tecnologia::Engenharia Civil |
description |
Data will be made available on request. Deep learning model for XBeach morphodynamic emulation: https://www.hydroshare.org/resource/b4ae97df748842a1800816b32a3d640b/ (Original data) (HydroShare) |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07 2023-07-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/86779 |
url |
https://hdl.handle.net/1822/86779 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Weber de Melo, W., Pinho, J., & Iglesias, I. (2023, July). Coastal morphodynamic emulator for early warning short-term forecasts. Environmental Modelling & Software. Elsevier BV. http://doi.org/10.1016/j.envsoft.2023.105729 1364-8152 cv-prod-3359545 10.1016/j.envsoft.2023.105729 https://www.sciencedirect.com/science/article/pii/S1364815223001159 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science BV |
publisher.none.fl_str_mv |
Elsevier Science BV |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133617262166016 |