Identifying key features for ESG score improvement in the Eu market - a machine learning approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/144988 |
Resumo: | The growing importance of sustainability in business practices has led to increases in non-financial reporting policies. With the upcoming Corporate Sustainability Reporting Directive, more companies within the European Union must prepare to identify and capture ESG data to stay competitive. This paper determines multiple key metrics for improving ESG performance by applying the Random Forest and Rule Fit machine learning methods. The findings indicate that while company size is a dominant predictor, other features can significantly set its ESG performance apart and increase its score. |
id |
RCAP_b3d6eef8cbc075e49d23d229ee68c929 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/144988 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Identifying key features for ESG score improvement in the Eu market - a machine learning approachMachine learningBusiness and data analyticsEsgEsg ratingsRefinitivDomínio/Área Científica::Ciências Sociais::Economia e GestãoThe growing importance of sustainability in business practices has led to increases in non-financial reporting policies. With the upcoming Corporate Sustainability Reporting Directive, more companies within the European Union must prepare to identify and capture ESG data to stay competitive. This paper determines multiple key metrics for improving ESG performance by applying the Random Forest and Rule Fit machine learning methods. The findings indicate that while company size is a dominant predictor, other features can significantly set its ESG performance apart and increase its score.Han, QiweiRUNBellon, Diego2022-01-212021-12-172025-12-17T00:00:00Z2022-01-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/144988TID:203063937enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:25:02Zoai:run.unl.pt:10362/144988Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:51:51.339314Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Identifying key features for ESG score improvement in the Eu market - a machine learning approach |
title |
Identifying key features for ESG score improvement in the Eu market - a machine learning approach |
spellingShingle |
Identifying key features for ESG score improvement in the Eu market - a machine learning approach Bellon, Diego Machine learning Business and data analytics Esg Esg ratings Refinitiv Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Identifying key features for ESG score improvement in the Eu market - a machine learning approach |
title_full |
Identifying key features for ESG score improvement in the Eu market - a machine learning approach |
title_fullStr |
Identifying key features for ESG score improvement in the Eu market - a machine learning approach |
title_full_unstemmed |
Identifying key features for ESG score improvement in the Eu market - a machine learning approach |
title_sort |
Identifying key features for ESG score improvement in the Eu market - a machine learning approach |
author |
Bellon, Diego |
author_facet |
Bellon, Diego |
author_role |
author |
dc.contributor.none.fl_str_mv |
Han, Qiwei RUN |
dc.contributor.author.fl_str_mv |
Bellon, Diego |
dc.subject.por.fl_str_mv |
Machine learning Business and data analytics Esg Esg ratings Refinitiv Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Machine learning Business and data analytics Esg Esg ratings Refinitiv Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
The growing importance of sustainability in business practices has led to increases in non-financial reporting policies. With the upcoming Corporate Sustainability Reporting Directive, more companies within the European Union must prepare to identify and capture ESG data to stay competitive. This paper determines multiple key metrics for improving ESG performance by applying the Random Forest and Rule Fit machine learning methods. The findings indicate that while company size is a dominant predictor, other features can significantly set its ESG performance apart and increase its score. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-17 2022-01-21 2022-01-21T00:00:00Z 2025-12-17T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/144988 TID:203063937 |
url |
http://hdl.handle.net/10362/144988 |
identifier_str_mv |
TID:203063937 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138110992285696 |