Intrinsic properties of a non-symmetric number triangle

Detalhes bibliográficos
Autor(a) principal: Cação, Isabel
Data de Publicação: 2023
Outros Autores: Malonek, Helmuth R., Falcão, M. I., Tomaz, Graça
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/87020
Resumo: Several authors are currently working on generalized Appell polynomials and their applications in the framework of hypercomplex function theory in Rn+1. A few years ago, two of the authors of this paper introduced a prototype of these generalized Appell polynomials, which heavily draws on a one-parameter family of non-symmetric number triangles T (n), n ≥ 2. In this paper, we prove several new and interesting properties of finite and infinite sums constructed from entries of T (n), similar to the ordinary Pascal triangle, which is not a part of that family. In particular, we obtain a recurrence relation for a family of finite sums, analogous to the ordinary Fibonacci sequence, and derive its corresponding generating function.
id RCAP_b6bae3045cb30af640b939aa45ee5aeb
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/87020
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Intrinsic properties of a non-symmetric number triangleFibonacci sequenceHypercomplex function theoryHyperge-ometric functionRecurrence relationCiências Naturais::MatemáticasSeveral authors are currently working on generalized Appell polynomials and their applications in the framework of hypercomplex function theory in Rn+1. A few years ago, two of the authors of this paper introduced a prototype of these generalized Appell polynomials, which heavily draws on a one-parameter family of non-symmetric number triangles T (n), n ≥ 2. In this paper, we prove several new and interesting properties of finite and infinite sums constructed from entries of T (n), similar to the ordinary Pascal triangle, which is not a part of that family. In particular, we obtain a recurrence relation for a family of finite sums, analogous to the ordinary Fibonacci sequence, and derive its corresponding generating function.UA - Universidade de Aveiro(UIDB/00013/2020)This work was supported by Portuguese funds through the CMAT - Research Centre of Mathematics of University of Minho - and through the CIDMA - Center of Research and De velopment in Mathematics and Applications (University of Aveiro) and the Portuguese Foun dation for Science and Technology (“FCT - Funda¸c˜ao para a Ciˆencia e Tecnologia”), within projects UIDB/00013/2020, UIDP/00013/2020, UIDB/04106/2020 and UIDP/04106/2020.University of WaterlooUniversidade do MinhoCação, IsabelMalonek, Helmuth R.Falcão, M. I.Tomaz, Graça2023-01-012023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/87020eng1530-7638https://cs.uwaterloo.ca/journals/JIS/VOL26/Falcao/falcao5.pdfinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T05:33:19Zoai:repositorium.sdum.uminho.pt:1822/87020Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T05:33:19Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Intrinsic properties of a non-symmetric number triangle
title Intrinsic properties of a non-symmetric number triangle
spellingShingle Intrinsic properties of a non-symmetric number triangle
Cação, Isabel
Fibonacci sequence
Hypercomplex function theory
Hyperge-ometric function
Recurrence relation
Ciências Naturais::Matemáticas
title_short Intrinsic properties of a non-symmetric number triangle
title_full Intrinsic properties of a non-symmetric number triangle
title_fullStr Intrinsic properties of a non-symmetric number triangle
title_full_unstemmed Intrinsic properties of a non-symmetric number triangle
title_sort Intrinsic properties of a non-symmetric number triangle
author Cação, Isabel
author_facet Cação, Isabel
Malonek, Helmuth R.
Falcão, M. I.
Tomaz, Graça
author_role author
author2 Malonek, Helmuth R.
Falcão, M. I.
Tomaz, Graça
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Cação, Isabel
Malonek, Helmuth R.
Falcão, M. I.
Tomaz, Graça
dc.subject.por.fl_str_mv Fibonacci sequence
Hypercomplex function theory
Hyperge-ometric function
Recurrence relation
Ciências Naturais::Matemáticas
topic Fibonacci sequence
Hypercomplex function theory
Hyperge-ometric function
Recurrence relation
Ciências Naturais::Matemáticas
description Several authors are currently working on generalized Appell polynomials and their applications in the framework of hypercomplex function theory in Rn+1. A few years ago, two of the authors of this paper introduced a prototype of these generalized Appell polynomials, which heavily draws on a one-parameter family of non-symmetric number triangles T (n), n ≥ 2. In this paper, we prove several new and interesting properties of finite and infinite sums constructed from entries of T (n), similar to the ordinary Pascal triangle, which is not a part of that family. In particular, we obtain a recurrence relation for a family of finite sums, analogous to the ordinary Fibonacci sequence, and derive its corresponding generating function.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-01
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/87020
url https://hdl.handle.net/1822/87020
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1530-7638
https://cs.uwaterloo.ca/journals/JIS/VOL26/Falcao/falcao5.pdf
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv University of Waterloo
publisher.none.fl_str_mv University of Waterloo
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817544660810203136