Intrinsic properties of a non-symmetric number triangle

Detalhes bibliográficos
Autor(a) principal: Cação, Isabel
Data de Publicação: 2023
Outros Autores: Malonek, Helmuth R., Falcão, M. Irene, Tomaz, Graça
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/40086
Resumo: Several authors are currently working on generalized Appell polynomials and their applications in the framework of hypercomplex function theory in Rn+1. A few years ago, two of the authors of this paper introduced a prototype of these generalized Appell polynomials, which heavily draws on a one-parameter family of non-symmetric number triangles T (n), n ≥ 2. In this paper, we prove several new and interesting properties of finite and infinite sums constructed from entries of T (n), similar to the ordinary Pascal triangle, which is not a part of that family. In particular, we obtain a recurrence relation for a family of finite sums, analogous to the ordinary Fibonacci sequence, and derive its corresponding generating function.
id RCAP_ccf1f736856e3574e01ffe5431450011
oai_identifier_str oai:ria.ua.pt:10773/40086
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Intrinsic properties of a non-symmetric number triangleFibonacci sequenceHypergeometric functionHypercomplex analysisRecurrence relationSeveral authors are currently working on generalized Appell polynomials and their applications in the framework of hypercomplex function theory in Rn+1. A few years ago, two of the authors of this paper introduced a prototype of these generalized Appell polynomials, which heavily draws on a one-parameter family of non-symmetric number triangles T (n), n ≥ 2. In this paper, we prove several new and interesting properties of finite and infinite sums constructed from entries of T (n), similar to the ordinary Pascal triangle, which is not a part of that family. In particular, we obtain a recurrence relation for a family of finite sums, analogous to the ordinary Fibonacci sequence, and derive its corresponding generating function.University of Waterloo2024-01-11T15:03:13Z2023-01-01T00:00:00Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/40086eng1530-7638Cação, IsabelMalonek, Helmuth R.Falcão, M. IreneTomaz, Graçainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:51:00Zoai:ria.ua.pt:10773/40086Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:51Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Intrinsic properties of a non-symmetric number triangle
title Intrinsic properties of a non-symmetric number triangle
spellingShingle Intrinsic properties of a non-symmetric number triangle
Cação, Isabel
Fibonacci sequence
Hypergeometric function
Hypercomplex analysis
Recurrence relation
title_short Intrinsic properties of a non-symmetric number triangle
title_full Intrinsic properties of a non-symmetric number triangle
title_fullStr Intrinsic properties of a non-symmetric number triangle
title_full_unstemmed Intrinsic properties of a non-symmetric number triangle
title_sort Intrinsic properties of a non-symmetric number triangle
author Cação, Isabel
author_facet Cação, Isabel
Malonek, Helmuth R.
Falcão, M. Irene
Tomaz, Graça
author_role author
author2 Malonek, Helmuth R.
Falcão, M. Irene
Tomaz, Graça
author2_role author
author
author
dc.contributor.author.fl_str_mv Cação, Isabel
Malonek, Helmuth R.
Falcão, M. Irene
Tomaz, Graça
dc.subject.por.fl_str_mv Fibonacci sequence
Hypergeometric function
Hypercomplex analysis
Recurrence relation
topic Fibonacci sequence
Hypergeometric function
Hypercomplex analysis
Recurrence relation
description Several authors are currently working on generalized Appell polynomials and their applications in the framework of hypercomplex function theory in Rn+1. A few years ago, two of the authors of this paper introduced a prototype of these generalized Appell polynomials, which heavily draws on a one-parameter family of non-symmetric number triangles T (n), n ≥ 2. In this paper, we prove several new and interesting properties of finite and infinite sums constructed from entries of T (n), similar to the ordinary Pascal triangle, which is not a part of that family. In particular, we obtain a recurrence relation for a family of finite sums, analogous to the ordinary Fibonacci sequence, and derive its corresponding generating function.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-01T00:00:00Z
2023
2024-01-11T15:03:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/40086
url http://hdl.handle.net/10773/40086
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1530-7638
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv University of Waterloo
publisher.none.fl_str_mv University of Waterloo
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543884003082240