Assessing the impact of academic achievement determinants using Machine Learning methods: evidence from a European country
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/132859 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
id |
RCAP_b73d894c5140555a4225b15c2809dcbc |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/132859 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Assessing the impact of academic achievement determinants using Machine Learning methods: evidence from a European countryEducationAcademic AchievementData ScienceDriversSDG 4 - Quality educationDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsAcademic achievement has been of great interest for researchers since the 1950s, although only recently have data science methods started to be applied more systematically. This paper uses the mathematics and Portuguese national exams of the population in Portugal in the 2018/2019 academic year to evaluate the performance between methods and compare what factors affect the results of these exams differently. Furthermore, a new approach is presented to deal with the "black-box" dilemma by creating a set of prototypes with a simple statistical approach applied through Neural Networks, providing an approximation of how much a variable impacts a grade.Jesus, Frederico Miguel Campos Cruz Ribeiro deRUNAfonso, Ana Beatriz Antunes2022-01-122025-01-12T00:00:00Z2022-01-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/132859TID:202944450enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:11:32Zoai:run.unl.pt:10362/132859Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:47:37.183302Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Assessing the impact of academic achievement determinants using Machine Learning methods: evidence from a European country |
title |
Assessing the impact of academic achievement determinants using Machine Learning methods: evidence from a European country |
spellingShingle |
Assessing the impact of academic achievement determinants using Machine Learning methods: evidence from a European country Afonso, Ana Beatriz Antunes Education Academic Achievement Data Science Drivers SDG 4 - Quality education |
title_short |
Assessing the impact of academic achievement determinants using Machine Learning methods: evidence from a European country |
title_full |
Assessing the impact of academic achievement determinants using Machine Learning methods: evidence from a European country |
title_fullStr |
Assessing the impact of academic achievement determinants using Machine Learning methods: evidence from a European country |
title_full_unstemmed |
Assessing the impact of academic achievement determinants using Machine Learning methods: evidence from a European country |
title_sort |
Assessing the impact of academic achievement determinants using Machine Learning methods: evidence from a European country |
author |
Afonso, Ana Beatriz Antunes |
author_facet |
Afonso, Ana Beatriz Antunes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Jesus, Frederico Miguel Campos Cruz Ribeiro de RUN |
dc.contributor.author.fl_str_mv |
Afonso, Ana Beatriz Antunes |
dc.subject.por.fl_str_mv |
Education Academic Achievement Data Science Drivers SDG 4 - Quality education |
topic |
Education Academic Achievement Data Science Drivers SDG 4 - Quality education |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-12 2022-01-12T00:00:00Z 2025-01-12T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/132859 TID:202944450 |
url |
http://hdl.handle.net/10362/132859 |
identifier_str_mv |
TID:202944450 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138078781079552 |