Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/103792 https://doi.org/10.21138/bage.3160 |
Resumo: | COVID-19 hit the world in a sudden and uneven way. Scientific community has provided strong evidence about socioeconomic characteristics of the territory associated with the geographical pattern of COVID-19 incidence. Still, the role played by these factors differs between study areas. Geographically Weighted Regression (GWR) models were applied to explore the spatially varying association between age-standardized COVID-19 incidence rate in 2020 and socioeconomic conditions in Portugal, at the municipality level. The spatial context was defined as a function of the number of neighbours; the bandwidth was determined through AIC. Prior, the validity of the GWR was assessed through ordinary least squares models. Border proximity, proportion of overcrowded living quarters, persons employed in manufacturing establishments and persons employed in construction establishments were found to be significant predictors. It was possible to observe that municipalities are affected differently by the same factor, and that this varying influence has identifiable geographical patterns, the role of each analysed factor varies importantly across the country. This study provides useful insights for policymakers for targeted interventions and for proper identification of risk factors. |
id |
RCAP_b74f4e92d3cefdbc42c9ee18414f9648 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/103792 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in PortugalCOVID-19geographical patternssocioeconomic disparitiesspatial analysisCOVID-19patrones geográficosdisparidades socioeconómicasanálisis espacialCOVID-19 hit the world in a sudden and uneven way. Scientific community has provided strong evidence about socioeconomic characteristics of the territory associated with the geographical pattern of COVID-19 incidence. Still, the role played by these factors differs between study areas. Geographically Weighted Regression (GWR) models were applied to explore the spatially varying association between age-standardized COVID-19 incidence rate in 2020 and socioeconomic conditions in Portugal, at the municipality level. The spatial context was defined as a function of the number of neighbours; the bandwidth was determined through AIC. Prior, the validity of the GWR was assessed through ordinary least squares models. Border proximity, proportion of overcrowded living quarters, persons employed in manufacturing establishments and persons employed in construction establishments were found to be significant predictors. It was possible to observe that municipalities are affected differently by the same factor, and that this varying influence has identifiable geographical patterns, the role of each analysed factor varies importantly across the country. This study provides useful insights for policymakers for targeted interventions and for proper identification of risk factors.COVID-19 golpeó al mundo de manera repentina y desigual. La comunidad científica ha aportado pruebas sobre las características socioeconómicas del territorio asociadas al patrón geográfico de incidencia de COVID-19. Se aplicaron modelos de regresión ponderada geográficamente (GWR) para explorar la asociación espacialmente variable entre la tasa de incidencia de COVID-19 estandarizada por edad y las condiciones socioeconómicas (viviendas superpobladas, capacidad en unidades de atención social para ancianos, trabajadores de la construcción y manufactura, proximidad de la frontera y personas que se desplazan para un municipio). El contexto espacial se definió en función del número de vecinos; el ancho de banda se determinó mediante AIC. Previamente se evaluó el GWR mediante modelos de mínimos cuadrados ordinarios. La proximidad de la frontera, la proporción de viviendas superpobladas, las personas empleadas en establecimientos manufactureros y las personas empleadas en establecimientos de construcción resultan ser predictores significativos. Se pudo observar que los municipios se ven afectados diferentemente por el mismo factor y que esta influencia variable tiene patrones geográficos identificables, el papel de cada factor analizado varía de manera importante a lo largo del país. Este estudio proporciona información útil para los formuladores de políticas para intervenciones específicas y para la identificación adecuada de factores de riesgo.Asociacion Espanola de Geografia2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/103792http://hdl.handle.net/10316/103792https://doi.org/10.21138/bage.3160eng2605-33220212-9426Almendra, RicardoSantana, PaulaCosta, Cláudiainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-28T21:39:02Zoai:estudogeral.uc.pt:10316/103792Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:20:34.124830Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal |
title |
Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal |
spellingShingle |
Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal Almendra, Ricardo COVID-19 geographical patterns socioeconomic disparities spatial analysis COVID-19 patrones geográficos disparidades socioeconómicas análisis espacial |
title_short |
Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal |
title_full |
Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal |
title_fullStr |
Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal |
title_full_unstemmed |
Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal |
title_sort |
Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal |
author |
Almendra, Ricardo |
author_facet |
Almendra, Ricardo Santana, Paula Costa, Cláudia |
author_role |
author |
author2 |
Santana, Paula Costa, Cláudia |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Almendra, Ricardo Santana, Paula Costa, Cláudia |
dc.subject.por.fl_str_mv |
COVID-19 geographical patterns socioeconomic disparities spatial analysis COVID-19 patrones geográficos disparidades socioeconómicas análisis espacial |
topic |
COVID-19 geographical patterns socioeconomic disparities spatial analysis COVID-19 patrones geográficos disparidades socioeconómicas análisis espacial |
description |
COVID-19 hit the world in a sudden and uneven way. Scientific community has provided strong evidence about socioeconomic characteristics of the territory associated with the geographical pattern of COVID-19 incidence. Still, the role played by these factors differs between study areas. Geographically Weighted Regression (GWR) models were applied to explore the spatially varying association between age-standardized COVID-19 incidence rate in 2020 and socioeconomic conditions in Portugal, at the municipality level. The spatial context was defined as a function of the number of neighbours; the bandwidth was determined through AIC. Prior, the validity of the GWR was assessed through ordinary least squares models. Border proximity, proportion of overcrowded living quarters, persons employed in manufacturing establishments and persons employed in construction establishments were found to be significant predictors. It was possible to observe that municipalities are affected differently by the same factor, and that this varying influence has identifiable geographical patterns, the role of each analysed factor varies importantly across the country. This study provides useful insights for policymakers for targeted interventions and for proper identification of risk factors. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/103792 http://hdl.handle.net/10316/103792 https://doi.org/10.21138/bage.3160 |
url |
http://hdl.handle.net/10316/103792 https://doi.org/10.21138/bage.3160 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2605-3322 0212-9426 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Asociacion Espanola de Geografia |
publisher.none.fl_str_mv |
Asociacion Espanola de Geografia |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134097852858368 |