Hyperparameter fine tuning for a time series forecasting model

Detalhes bibliográficos
Autor(a) principal: Magalhães, Manuel Maria Da Cunha
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/145522
Resumo: This project was conducted in the context of the Project-Based Learning program. The purpose of the program is to provide an experience in a real-life business and data analytics project. During the last 18 months a work collaboration have been carried out between four NOVA SBE Business Analytics master students and Brisa. The main objective of the project was to produce new traffic forecasting models in Python. The individual work carried out by the author of this study, was focused on the hyperparameter fine tuning procedure for the forecasting models. The research for different methodologies resulted in the experimentation of grid search and random search frameworks. As expected, grid search achieved better results but it is a process that requires more computational power and time.
id RCAP_b76c6e75c42a6399f857262f007393aa
oai_identifier_str oai:run.unl.pt:10362/145522
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Hyperparameter fine tuning for a time series forecasting modelBusiness analyticsBusiness and data analyticsGrid searchHyperparameter fine tuningRandom searchDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis project was conducted in the context of the Project-Based Learning program. The purpose of the program is to provide an experience in a real-life business and data analytics project. During the last 18 months a work collaboration have been carried out between four NOVA SBE Business Analytics master students and Brisa. The main objective of the project was to produce new traffic forecasting models in Python. The individual work carried out by the author of this study, was focused on the hyperparameter fine tuning procedure for the forecasting models. The research for different methodologies resulted in the experimentation of grid search and random search frameworks. As expected, grid search achieved better results but it is a process that requires more computational power and time.Xufre, PatriciaRUNMagalhães, Manuel Maria Da Cunha2022-11-15T14:15:56Z2022-01-202021-12-172022-01-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/145522TID:203082664enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:26:01Zoai:run.unl.pt:10362/145522Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:52:07.690470Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Hyperparameter fine tuning for a time series forecasting model
title Hyperparameter fine tuning for a time series forecasting model
spellingShingle Hyperparameter fine tuning for a time series forecasting model
Magalhães, Manuel Maria Da Cunha
Business analytics
Business and data analytics
Grid search
Hyperparameter fine tuning
Random search
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Hyperparameter fine tuning for a time series forecasting model
title_full Hyperparameter fine tuning for a time series forecasting model
title_fullStr Hyperparameter fine tuning for a time series forecasting model
title_full_unstemmed Hyperparameter fine tuning for a time series forecasting model
title_sort Hyperparameter fine tuning for a time series forecasting model
author Magalhães, Manuel Maria Da Cunha
author_facet Magalhães, Manuel Maria Da Cunha
author_role author
dc.contributor.none.fl_str_mv Xufre, Patricia
RUN
dc.contributor.author.fl_str_mv Magalhães, Manuel Maria Da Cunha
dc.subject.por.fl_str_mv Business analytics
Business and data analytics
Grid search
Hyperparameter fine tuning
Random search
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Business analytics
Business and data analytics
Grid search
Hyperparameter fine tuning
Random search
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description This project was conducted in the context of the Project-Based Learning program. The purpose of the program is to provide an experience in a real-life business and data analytics project. During the last 18 months a work collaboration have been carried out between four NOVA SBE Business Analytics master students and Brisa. The main objective of the project was to produce new traffic forecasting models in Python. The individual work carried out by the author of this study, was focused on the hyperparameter fine tuning procedure for the forecasting models. The research for different methodologies resulted in the experimentation of grid search and random search frameworks. As expected, grid search achieved better results but it is a process that requires more computational power and time.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-17
2022-11-15T14:15:56Z
2022-01-20
2022-01-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/145522
TID:203082664
url http://hdl.handle.net/10362/145522
identifier_str_mv TID:203082664
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138112974094336