Hyperparameter fine tuning for a time series forecasting model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/145522 |
Resumo: | This project was conducted in the context of the Project-Based Learning program. The purpose of the program is to provide an experience in a real-life business and data analytics project. During the last 18 months a work collaboration have been carried out between four NOVA SBE Business Analytics master students and Brisa. The main objective of the project was to produce new traffic forecasting models in Python. The individual work carried out by the author of this study, was focused on the hyperparameter fine tuning procedure for the forecasting models. The research for different methodologies resulted in the experimentation of grid search and random search frameworks. As expected, grid search achieved better results but it is a process that requires more computational power and time. |
id |
RCAP_b76c6e75c42a6399f857262f007393aa |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/145522 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hyperparameter fine tuning for a time series forecasting modelBusiness analyticsBusiness and data analyticsGrid searchHyperparameter fine tuningRandom searchDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis project was conducted in the context of the Project-Based Learning program. The purpose of the program is to provide an experience in a real-life business and data analytics project. During the last 18 months a work collaboration have been carried out between four NOVA SBE Business Analytics master students and Brisa. The main objective of the project was to produce new traffic forecasting models in Python. The individual work carried out by the author of this study, was focused on the hyperparameter fine tuning procedure for the forecasting models. The research for different methodologies resulted in the experimentation of grid search and random search frameworks. As expected, grid search achieved better results but it is a process that requires more computational power and time.Xufre, PatriciaRUNMagalhães, Manuel Maria Da Cunha2022-11-15T14:15:56Z2022-01-202021-12-172022-01-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/145522TID:203082664enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:26:01Zoai:run.unl.pt:10362/145522Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:52:07.690470Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hyperparameter fine tuning for a time series forecasting model |
title |
Hyperparameter fine tuning for a time series forecasting model |
spellingShingle |
Hyperparameter fine tuning for a time series forecasting model Magalhães, Manuel Maria Da Cunha Business analytics Business and data analytics Grid search Hyperparameter fine tuning Random search Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Hyperparameter fine tuning for a time series forecasting model |
title_full |
Hyperparameter fine tuning for a time series forecasting model |
title_fullStr |
Hyperparameter fine tuning for a time series forecasting model |
title_full_unstemmed |
Hyperparameter fine tuning for a time series forecasting model |
title_sort |
Hyperparameter fine tuning for a time series forecasting model |
author |
Magalhães, Manuel Maria Da Cunha |
author_facet |
Magalhães, Manuel Maria Da Cunha |
author_role |
author |
dc.contributor.none.fl_str_mv |
Xufre, Patricia RUN |
dc.contributor.author.fl_str_mv |
Magalhães, Manuel Maria Da Cunha |
dc.subject.por.fl_str_mv |
Business analytics Business and data analytics Grid search Hyperparameter fine tuning Random search Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Business analytics Business and data analytics Grid search Hyperparameter fine tuning Random search Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
This project was conducted in the context of the Project-Based Learning program. The purpose of the program is to provide an experience in a real-life business and data analytics project. During the last 18 months a work collaboration have been carried out between four NOVA SBE Business Analytics master students and Brisa. The main objective of the project was to produce new traffic forecasting models in Python. The individual work carried out by the author of this study, was focused on the hyperparameter fine tuning procedure for the forecasting models. The research for different methodologies resulted in the experimentation of grid search and random search frameworks. As expected, grid search achieved better results but it is a process that requires more computational power and time. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-17 2022-11-15T14:15:56Z 2022-01-20 2022-01-20T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/145522 TID:203082664 |
url |
http://hdl.handle.net/10362/145522 |
identifier_str_mv |
TID:203082664 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138112974094336 |