β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/63225 |
Resumo: | β-Lactoglobulin (β-Lg) is known to be capable to bind hydrophilic and hydrophobic bioactive compounds. This research aimed to assess the in vitro performance of β-Lg micro- (diameter ranging from 200 to 300 nm) and nano (diameter < 100 nm) structures associated to hydrophilic and hydrophobic model compounds on Caco-2 cells and under simulated gastrointestinal (GI) conditions. Riboflavin and quercetin were studied as hydrophilic and hydrophobic model compounds, respectively. Cytotoxicity experiment was conducted using in vitro cellular model based on human colon carcinoma Caco-2 cells. Moreover, the digestion process was simulated using the harmonized INFOGEST in vitro digestion model, where samples were taken at each phase of digestion process - oral, gastric and intestinal - and characterized in terms of particle size, polydispersity index (PDI), surface charge by dynamic light scattering (DLS); protein hydrolysis degree by 2,4,6-trinitrobenzene sulfonic acid (TNBSA) assay and native polyacrylamide gel electrophoresis; and bioactive compound concentration. Caco-2 cell viability was not affected up to 21 × 10−3 mg mL−1 of riboflavin and 16 × 10−3 mg mL−1 quercetin on β-Lg micro- and nanostructures. In the oral phase, β-Lg structures’ particle size, PDI and surface charge values were not changed comparing to the initial β-Lg structures (i.e., before being subjected to in vitro GI digestion). During gastric digestion, β-Lg structures were resistant to proteolytic enzymes and to acid environment of the stomach – confirmed by TNBSA and native gel electrophoresis. In vitro digestion results indicated that β-Lg micro- and nanostructures protected both hydrophilic and hydrophobic compounds from gastric conditions and deliver them to target site (i.e., intestinal phase). In addition, β-Lg structures were capable to enhance riboflavin and quercetin bioaccessibility and bioavailability potential compared to bioactive compounds in their free form. This study indicated that β-Lg micro- and nanostructures were capable to enhance hydrophilic and hydrophobic compounds bioavailability potential and they can be used as oral delivery systems. |
id |
RCAP_b879773f6871fe1989a6f2a3ac320d8d |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/63225 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studiesBioaccessibilityBioavailabilityCaco-2 cellsDelivery systemsHydrophilic compoundsHydrophobic compoundsFood-gradeScience & Technologyβ-Lactoglobulin (β-Lg) is known to be capable to bind hydrophilic and hydrophobic bioactive compounds. This research aimed to assess the in vitro performance of β-Lg micro- (diameter ranging from 200 to 300 nm) and nano (diameter < 100 nm) structures associated to hydrophilic and hydrophobic model compounds on Caco-2 cells and under simulated gastrointestinal (GI) conditions. Riboflavin and quercetin were studied as hydrophilic and hydrophobic model compounds, respectively. Cytotoxicity experiment was conducted using in vitro cellular model based on human colon carcinoma Caco-2 cells. Moreover, the digestion process was simulated using the harmonized INFOGEST in vitro digestion model, where samples were taken at each phase of digestion process - oral, gastric and intestinal - and characterized in terms of particle size, polydispersity index (PDI), surface charge by dynamic light scattering (DLS); protein hydrolysis degree by 2,4,6-trinitrobenzene sulfonic acid (TNBSA) assay and native polyacrylamide gel electrophoresis; and bioactive compound concentration. Caco-2 cell viability was not affected up to 21 × 10−3 mg mL−1 of riboflavin and 16 × 10−3 mg mL−1 quercetin on β-Lg micro- and nanostructures. In the oral phase, β-Lg structures’ particle size, PDI and surface charge values were not changed comparing to the initial β-Lg structures (i.e., before being subjected to in vitro GI digestion). During gastric digestion, β-Lg structures were resistant to proteolytic enzymes and to acid environment of the stomach – confirmed by TNBSA and native gel electrophoresis. In vitro digestion results indicated that β-Lg micro- and nanostructures protected both hydrophilic and hydrophobic compounds from gastric conditions and deliver them to target site (i.e., intestinal phase). In addition, β-Lg structures were capable to enhance riboflavin and quercetin bioaccessibility and bioavailability potential compared to bioactive compounds in their free form. This study indicated that β-Lg micro- and nanostructures were capable to enhance hydrophilic and hydrophobic compounds bioavailability potential and they can be used as oral delivery systems.Livia de Souza Simoes gratefully acknowledges her grant to CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brasil) from Brazil. The authors also would like to acknowledge Luis Abrunhosa, from Centre of Biological Engineering, for assistance in High Pressure Liquid Chromatography -Fluorescence detection. This study was supported by FCT under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. This study was also supported by FCT under the scope of the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462).info:eu-repo/semantics/publishedVersionElsevierUniversidade do MinhoSimões, Lívia SouzaMartins, Joana T.Pinheiro, Ana CristinaVicente, A. A.Ramos, Oscar L.2020-052020-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/63225engSimões, Lívia S; Martins, Joana T.; Pinheiro, Ana Cristina; Vicente, António A.; Ramos, Oscar L., β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies. Food Research International, 131(108979), 20200963-996910.1016/j.foodres.2020.10897932247463http://www.journals.elsevier.com/food-research-international/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:36:56Zoai:repositorium.sdum.uminho.pt:1822/63225Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:33:08.380814Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies |
title |
β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies |
spellingShingle |
β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies Simões, Lívia Souza Bioaccessibility Bioavailability Caco-2 cells Delivery systems Hydrophilic compounds Hydrophobic compounds Food-grade Science & Technology |
title_short |
β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies |
title_full |
β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies |
title_fullStr |
β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies |
title_full_unstemmed |
β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies |
title_sort |
β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies |
author |
Simões, Lívia Souza |
author_facet |
Simões, Lívia Souza Martins, Joana T. Pinheiro, Ana Cristina Vicente, A. A. Ramos, Oscar L. |
author_role |
author |
author2 |
Martins, Joana T. Pinheiro, Ana Cristina Vicente, A. A. Ramos, Oscar L. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Simões, Lívia Souza Martins, Joana T. Pinheiro, Ana Cristina Vicente, A. A. Ramos, Oscar L. |
dc.subject.por.fl_str_mv |
Bioaccessibility Bioavailability Caco-2 cells Delivery systems Hydrophilic compounds Hydrophobic compounds Food-grade Science & Technology |
topic |
Bioaccessibility Bioavailability Caco-2 cells Delivery systems Hydrophilic compounds Hydrophobic compounds Food-grade Science & Technology |
description |
β-Lactoglobulin (β-Lg) is known to be capable to bind hydrophilic and hydrophobic bioactive compounds. This research aimed to assess the in vitro performance of β-Lg micro- (diameter ranging from 200 to 300 nm) and nano (diameter < 100 nm) structures associated to hydrophilic and hydrophobic model compounds on Caco-2 cells and under simulated gastrointestinal (GI) conditions. Riboflavin and quercetin were studied as hydrophilic and hydrophobic model compounds, respectively. Cytotoxicity experiment was conducted using in vitro cellular model based on human colon carcinoma Caco-2 cells. Moreover, the digestion process was simulated using the harmonized INFOGEST in vitro digestion model, where samples were taken at each phase of digestion process - oral, gastric and intestinal - and characterized in terms of particle size, polydispersity index (PDI), surface charge by dynamic light scattering (DLS); protein hydrolysis degree by 2,4,6-trinitrobenzene sulfonic acid (TNBSA) assay and native polyacrylamide gel electrophoresis; and bioactive compound concentration. Caco-2 cell viability was not affected up to 21 × 10−3 mg mL−1 of riboflavin and 16 × 10−3 mg mL−1 quercetin on β-Lg micro- and nanostructures. In the oral phase, β-Lg structures’ particle size, PDI and surface charge values were not changed comparing to the initial β-Lg structures (i.e., before being subjected to in vitro GI digestion). During gastric digestion, β-Lg structures were resistant to proteolytic enzymes and to acid environment of the stomach – confirmed by TNBSA and native gel electrophoresis. In vitro digestion results indicated that β-Lg micro- and nanostructures protected both hydrophilic and hydrophobic compounds from gastric conditions and deliver them to target site (i.e., intestinal phase). In addition, β-Lg structures were capable to enhance riboflavin and quercetin bioaccessibility and bioavailability potential compared to bioactive compounds in their free form. This study indicated that β-Lg micro- and nanostructures were capable to enhance hydrophilic and hydrophobic compounds bioavailability potential and they can be used as oral delivery systems. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 2020-05-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/63225 |
url |
http://hdl.handle.net/1822/63225 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Simões, Lívia S; Martins, Joana T.; Pinheiro, Ana Cristina; Vicente, António A.; Ramos, Oscar L., β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies. Food Research International, 131(108979), 2020 0963-9969 10.1016/j.foodres.2020.108979 32247463 http://www.journals.elsevier.com/food-research-international/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132847799271424 |