Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/62527 |
Resumo: | -lactoglobulin (-Lg) has the ability to form three-dimensional networks when heated above denaturation temperature (ca. 76°C), since it undergoes conformational changes followed by subsequent protein-protein interactions, which allows designing stable micro- and nanostructures with affinity to bind to a wide range of molecules. In this sense, -Lg micro (with particle size from 200 to 300nm) and nano (with particle size100nm) structures were developed as a delivery system for the controlled release of hydrophilic and hydrophobic model compounds. Several concentrations of bioactive compounds were incorporated into -Lg micro- and nanostructures and their association efficiency (AE) and loading capacity (LC) were determined. -Lg structures were characterized in terms of structural properties, morphology, binding mechanisms, conformational changes and secondary structure. The impact of several conditions (e.g., pH, thermal processing, ionic strength and storage temperature) on the stability of -Lg structures was also investigated. The release profile of bioactive compounds from -Lg structures was determined in vitro using two food simulants with different hydrophobicities under different temperature conditions (at 4°C and 25°C). Data recorded showed that -Lg nanostructures had the highest AE and LC comparing with -Lg microstructures, for both bioactive compounds tested. -Lg micro- and nanostructures with or without association of bioactive compounds showed to be stable under acidic (pH 2 to 3), neutral (pH 6) or alkaline (pH 10) conditions, thermal treatments up to 70°C and during storage for 50 and 90 days at 25°C and 4°C, maintaining their particle size, PDI and surface charge (p>0.05). The release kinetics of bioactive compounds from micro- and nanostructures fitted well the Linear Superimposition Model, being the relaxation the main release mechanism. Both compounds showed an initial burst effect followed by a slow release. All these findings provide new insights on which conditions the -Lg micro- and nanostructures are more stable, and therefore more suitable to act as potential delivery systems for hydrophilic and hydrophobic bioactive compounds. |
id |
RCAP_09bd64ea0528ba447f758f43d92c0743 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/62527 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compoundsß-LactoglobulinMicro- and nano structuresDelivery systemsHydrophilic compoundsHydrophobic compoundsFood-gradeFood simulantβ-LactoglobulinCiências Agrárias::Biotecnologia Agrária e AlimentarScience & Technology-lactoglobulin (-Lg) has the ability to form three-dimensional networks when heated above denaturation temperature (ca. 76°C), since it undergoes conformational changes followed by subsequent protein-protein interactions, which allows designing stable micro- and nanostructures with affinity to bind to a wide range of molecules. In this sense, -Lg micro (with particle size from 200 to 300nm) and nano (with particle size100nm) structures were developed as a delivery system for the controlled release of hydrophilic and hydrophobic model compounds. Several concentrations of bioactive compounds were incorporated into -Lg micro- and nanostructures and their association efficiency (AE) and loading capacity (LC) were determined. -Lg structures were characterized in terms of structural properties, morphology, binding mechanisms, conformational changes and secondary structure. The impact of several conditions (e.g., pH, thermal processing, ionic strength and storage temperature) on the stability of -Lg structures was also investigated. The release profile of bioactive compounds from -Lg structures was determined in vitro using two food simulants with different hydrophobicities under different temperature conditions (at 4°C and 25°C). Data recorded showed that -Lg nanostructures had the highest AE and LC comparing with -Lg microstructures, for both bioactive compounds tested. -Lg micro- and nanostructures with or without association of bioactive compounds showed to be stable under acidic (pH 2 to 3), neutral (pH 6) or alkaline (pH 10) conditions, thermal treatments up to 70°C and during storage for 50 and 90 days at 25°C and 4°C, maintaining their particle size, PDI and surface charge (p>0.05). The release kinetics of bioactive compounds from micro- and nanostructures fitted well the Linear Superimposition Model, being the relaxation the main release mechanism. Both compounds showed an initial burst effect followed by a slow release. All these findings provide new insights on which conditions the -Lg micro- and nanostructures are more stable, and therefore more suitable to act as potential delivery systems for hydrophilic and hydrophobic bioactive compounds.FCT under the scope of the strategic funding of UID/Multi/50016/2019 and UID/BIO/04469/2013 units and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. This study was also supported by FCT under the scope of the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462)info:eu-repo/semantics/publishedVersionElsevierUniversidade do MinhoSimões, Lívia SouzaAbrunhosa, LuísVicente, A. A.Ramos, Oscar L.2020-042020-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/62527engSimões, Lívia S; Abrunhosa, Luís; Vicente, António A.; Ramos, Oscar L., Suitability of -lactoglobulin micro- and nanostructures for loading and release of bioactive compounds. Food Hydrocolloids, 101(105492), 20200268-005X1873-713710.1016/j.foodhyd.2019.105492https://www.sciencedirect.com/science/article/pii/S0268005X19318521info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:00:23Zoai:repositorium.sdum.uminho.pt:1822/62527Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:50:16.033858Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds |
title |
Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds |
spellingShingle |
Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds Simões, Lívia Souza ß-Lactoglobulin Micro- and nano structures Delivery systems Hydrophilic compounds Hydrophobic compounds Food-grade Food simulant β-Lactoglobulin Ciências Agrárias::Biotecnologia Agrária e Alimentar Science & Technology |
title_short |
Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds |
title_full |
Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds |
title_fullStr |
Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds |
title_full_unstemmed |
Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds |
title_sort |
Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds |
author |
Simões, Lívia Souza |
author_facet |
Simões, Lívia Souza Abrunhosa, Luís Vicente, A. A. Ramos, Oscar L. |
author_role |
author |
author2 |
Abrunhosa, Luís Vicente, A. A. Ramos, Oscar L. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Simões, Lívia Souza Abrunhosa, Luís Vicente, A. A. Ramos, Oscar L. |
dc.subject.por.fl_str_mv |
ß-Lactoglobulin Micro- and nano structures Delivery systems Hydrophilic compounds Hydrophobic compounds Food-grade Food simulant β-Lactoglobulin Ciências Agrárias::Biotecnologia Agrária e Alimentar Science & Technology |
topic |
ß-Lactoglobulin Micro- and nano structures Delivery systems Hydrophilic compounds Hydrophobic compounds Food-grade Food simulant β-Lactoglobulin Ciências Agrárias::Biotecnologia Agrária e Alimentar Science & Technology |
description |
-lactoglobulin (-Lg) has the ability to form three-dimensional networks when heated above denaturation temperature (ca. 76°C), since it undergoes conformational changes followed by subsequent protein-protein interactions, which allows designing stable micro- and nanostructures with affinity to bind to a wide range of molecules. In this sense, -Lg micro (with particle size from 200 to 300nm) and nano (with particle size100nm) structures were developed as a delivery system for the controlled release of hydrophilic and hydrophobic model compounds. Several concentrations of bioactive compounds were incorporated into -Lg micro- and nanostructures and their association efficiency (AE) and loading capacity (LC) were determined. -Lg structures were characterized in terms of structural properties, morphology, binding mechanisms, conformational changes and secondary structure. The impact of several conditions (e.g., pH, thermal processing, ionic strength and storage temperature) on the stability of -Lg structures was also investigated. The release profile of bioactive compounds from -Lg structures was determined in vitro using two food simulants with different hydrophobicities under different temperature conditions (at 4°C and 25°C). Data recorded showed that -Lg nanostructures had the highest AE and LC comparing with -Lg microstructures, for both bioactive compounds tested. -Lg micro- and nanostructures with or without association of bioactive compounds showed to be stable under acidic (pH 2 to 3), neutral (pH 6) or alkaline (pH 10) conditions, thermal treatments up to 70°C and during storage for 50 and 90 days at 25°C and 4°C, maintaining their particle size, PDI and surface charge (p>0.05). The release kinetics of bioactive compounds from micro- and nanostructures fitted well the Linear Superimposition Model, being the relaxation the main release mechanism. Both compounds showed an initial burst effect followed by a slow release. All these findings provide new insights on which conditions the -Lg micro- and nanostructures are more stable, and therefore more suitable to act as potential delivery systems for hydrophilic and hydrophobic bioactive compounds. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04 2020-04-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/62527 |
url |
http://hdl.handle.net/1822/62527 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Simões, Lívia S; Abrunhosa, Luís; Vicente, António A.; Ramos, Oscar L., Suitability of -lactoglobulin micro- and nanostructures for loading and release of bioactive compounds. Food Hydrocolloids, 101(105492), 2020 0268-005X 1873-7137 10.1016/j.foodhyd.2019.105492 https://www.sciencedirect.com/science/article/pii/S0268005X19318521 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132270568669184 |