On embedding countable sets of endomorphisms

Detalhes bibliográficos
Autor(a) principal: Araújo, João
Data de Publicação: 2003
Outros Autores: Mitchell, James D., Silva, Nuno
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.2/3810
Resumo: Sierpi´nski proved that every countable set of mappings on an infinite set X is contained in a 2-generated subsemigroup of the semigroup of all mappings on X. In this paper we prove that every countable set of endomorphisms of an algebra A which has an infinite basis (independent generating set) is contained in a 2-generated subsemigroup of the semigroup of all endomorphisms of A.
id RCAP_b97db6a711b231df844b5d28e9dd283a
oai_identifier_str oai:repositorioaberto.uab.pt:10400.2/3810
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On embedding countable sets of endomorphismsSierpi´nski proved that every countable set of mappings on an infinite set X is contained in a 2-generated subsemigroup of the semigroup of all mappings on X. In this paper we prove that every countable set of endomorphisms of an algebra A which has an infinite basis (independent generating set) is contained in a 2-generated subsemigroup of the semigroup of all endomorphisms of A.Repositório AbertoAraújo, JoãoMitchell, James D.Silva, Nuno2015-03-24T14:55:32Z20032003-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/3810engAraújo, João; Mitchell, James D.; Silva, Nuno - On embedding countable sets of endomorphisms. "Algebra Universalis" [Em linha]. ISSN 0002-5240 (Print) 1420-8911 (Online). Vol. 50 (2003), p. 1-60002-5240info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-16T15:19:12Zoai:repositorioaberto.uab.pt:10400.2/3810Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:45:00.494479Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On embedding countable sets of endomorphisms
title On embedding countable sets of endomorphisms
spellingShingle On embedding countable sets of endomorphisms
Araújo, João
title_short On embedding countable sets of endomorphisms
title_full On embedding countable sets of endomorphisms
title_fullStr On embedding countable sets of endomorphisms
title_full_unstemmed On embedding countable sets of endomorphisms
title_sort On embedding countable sets of endomorphisms
author Araújo, João
author_facet Araújo, João
Mitchell, James D.
Silva, Nuno
author_role author
author2 Mitchell, James D.
Silva, Nuno
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Aberto
dc.contributor.author.fl_str_mv Araújo, João
Mitchell, James D.
Silva, Nuno
description Sierpi´nski proved that every countable set of mappings on an infinite set X is contained in a 2-generated subsemigroup of the semigroup of all mappings on X. In this paper we prove that every countable set of endomorphisms of an algebra A which has an infinite basis (independent generating set) is contained in a 2-generated subsemigroup of the semigroup of all endomorphisms of A.
publishDate 2003
dc.date.none.fl_str_mv 2003
2003-01-01T00:00:00Z
2015-03-24T14:55:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.2/3810
url http://hdl.handle.net/10400.2/3810
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Araújo, João; Mitchell, James D.; Silva, Nuno - On embedding countable sets of endomorphisms. "Algebra Universalis" [Em linha]. ISSN 0002-5240 (Print) 1420-8911 (Online). Vol. 50 (2003), p. 1-6
0002-5240
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135021448036352