Policy renewal optimization project in health insurance
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/112795 |
Resumo: | Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_bb40a37fabafdfc8aa12f0d5b249c285 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/112795 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Policy renewal optimization project in health insuranceRenewalPropensityChurnLiftROCDataSoftwareSASEMBLEMTower WatsonHealth InsuranceInternship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsThe Renewal Optimization has been developed over the course of 9 months (September 2018 till June 2019) as part of the thesis for the MSc in Advanced Analytics and Data Science at the Nova Information Management School (Universidade Nova de Lisboa). The objective was to Predict the Probability of Renewing the policy of our customer. This would allow for more assertive and targeted marketing actions and decision making as well as fine tune the pricing strategy. The Training Sample is composed of data from the 1st of January 2017 till 30 June 2018 and the results presented reflect a picture of the Médis individual client portfolio from July 1st, 2018 till 31 December 2018 with 68 732 policies tested. The attributes used in the modelling process cover 6 customer dimensions: demographic, customer profile, product profile, bank variables and usage as well as interaction with the company. The final model results calculated the Renewal Probabilities of every active policy. These calculations have been divided in deciles where the first group have the lowest Renewal Probability estimated and the last one has the highest Renewal Probability estimated. To determine the factor that affects the Renewal Rate the most, a comparison has been conducted between the first and the last group (low probability and high probability groups). Next steps for the project include, but are not limited to, making the results available to all stakeholders and the monitoring plan is also discussed.Pinheiro, Flávio Luís PortasRUNBayoudh, Mohamed Ali2021-03-01T15:59:10Z2021-02-092021-02-09T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/112795TID:202654745enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:56:09Zoai:run.unl.pt:10362/112795Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:42:13.118099Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Policy renewal optimization project in health insurance |
title |
Policy renewal optimization project in health insurance |
spellingShingle |
Policy renewal optimization project in health insurance Bayoudh, Mohamed Ali Renewal Propensity Churn Lift ROC Data Software SAS EMBLEM Tower Watson Health Insurance |
title_short |
Policy renewal optimization project in health insurance |
title_full |
Policy renewal optimization project in health insurance |
title_fullStr |
Policy renewal optimization project in health insurance |
title_full_unstemmed |
Policy renewal optimization project in health insurance |
title_sort |
Policy renewal optimization project in health insurance |
author |
Bayoudh, Mohamed Ali |
author_facet |
Bayoudh, Mohamed Ali |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pinheiro, Flávio Luís Portas RUN |
dc.contributor.author.fl_str_mv |
Bayoudh, Mohamed Ali |
dc.subject.por.fl_str_mv |
Renewal Propensity Churn Lift ROC Data Software SAS EMBLEM Tower Watson Health Insurance |
topic |
Renewal Propensity Churn Lift ROC Data Software SAS EMBLEM Tower Watson Health Insurance |
description |
Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-01T15:59:10Z 2021-02-09 2021-02-09T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/112795 TID:202654745 |
url |
http://hdl.handle.net/10362/112795 |
identifier_str_mv |
TID:202654745 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138034265882624 |