Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/17146 |
Resumo: | Applications of unmanned aerial vehicles (UAVs) for data collection are a promising means to extend Internet of Things (IoT) networks to remote and hostile areas and to locations where there is no access to power supplies. The adequate design of UAV velocity control and communication decision making is critical to minimize the data packet losses at ground IoT nodes that result from overflowing buffers and transmission failures. However, online velocity control and communication decision making are challenging in UAV-enabled IoT networks, due to a UAV?s lack of up-to-date knowledge about the state of the nodes, e.g., the battery energy, buffer length, and channel conditions. |
id |
RCAP_bba060a49ce333388de995960e8ad151 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/17146 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning ApproachUnmanned aerial vehicleInternet-of-ThingsVelocity controlData captureDeep reinforcement learningApplications of unmanned aerial vehicles (UAVs) for data collection are a promising means to extend Internet of Things (IoT) networks to remote and hostile areas and to locations where there is no access to power supplies. The adequate design of UAV velocity control and communication decision making is critical to minimize the data packet losses at ground IoT nodes that result from overflowing buffers and transmission failures. However, online velocity control and communication decision making are challenging in UAV-enabled IoT networks, due to a UAV?s lack of up-to-date knowledge about the state of the nodes, e.g., the battery energy, buffer length, and channel conditions.Institute of Electrical and Electronics EngineersRepositório Científico do Instituto Politécnico do PortoLi, KaiNi, WeiTovar, EduardoJamalipour, Abbas20212120-01-01T00:00:00Z2021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/17146eng1556-608010.1109/MVT.2020.3039199metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:06:26Zoai:recipp.ipp.pt:10400.22/17146Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:36:46.607570Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach |
title |
Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach |
spellingShingle |
Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach Li, Kai Unmanned aerial vehicle Internet-of-Things Velocity control Data capture Deep reinforcement learning |
title_short |
Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach |
title_full |
Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach |
title_fullStr |
Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach |
title_full_unstemmed |
Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach |
title_sort |
Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach |
author |
Li, Kai |
author_facet |
Li, Kai Ni, Wei Tovar, Eduardo Jamalipour, Abbas |
author_role |
author |
author2 |
Ni, Wei Tovar, Eduardo Jamalipour, Abbas |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Li, Kai Ni, Wei Tovar, Eduardo Jamalipour, Abbas |
dc.subject.por.fl_str_mv |
Unmanned aerial vehicle Internet-of-Things Velocity control Data capture Deep reinforcement learning |
topic |
Unmanned aerial vehicle Internet-of-Things Velocity control Data capture Deep reinforcement learning |
description |
Applications of unmanned aerial vehicles (UAVs) for data collection are a promising means to extend Internet of Things (IoT) networks to remote and hostile areas and to locations where there is no access to power supplies. The adequate design of UAV velocity control and communication decision making is critical to minimize the data packet losses at ground IoT nodes that result from overflowing buffers and transmission failures. However, online velocity control and communication decision making are challenging in UAV-enabled IoT networks, due to a UAV?s lack of up-to-date knowledge about the state of the nodes, e.g., the battery energy, buffer length, and channel conditions. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z 2120-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/17146 |
url |
http://hdl.handle.net/10400.22/17146 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1556-6080 10.1109/MVT.2020.3039199 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131458689826816 |