Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach

Detalhes bibliográficos
Autor(a) principal: Li, Kai
Data de Publicação: 2021
Outros Autores: Ni, Wei, Tovar, Eduardo, Jamalipour, Abbas
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/17146
Resumo: Applications of unmanned aerial vehicles (UAVs) for data collection are a promising means to extend Internet of Things (IoT) networks to remote and hostile areas and to locations where there is no access to power supplies. The adequate design of UAV velocity control and communication decision making is critical to minimize the data packet losses at ground IoT nodes that result from overflowing buffers and transmission failures. However, online velocity control and communication decision making are challenging in UAV-enabled IoT networks, due to a UAV?s lack of up-to-date knowledge about the state of the nodes, e.g., the battery energy, buffer length, and channel conditions.
id RCAP_bba060a49ce333388de995960e8ad151
oai_identifier_str oai:recipp.ipp.pt:10400.22/17146
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning ApproachUnmanned aerial vehicleInternet-of-ThingsVelocity controlData captureDeep reinforcement learningApplications of unmanned aerial vehicles (UAVs) for data collection are a promising means to extend Internet of Things (IoT) networks to remote and hostile areas and to locations where there is no access to power supplies. The adequate design of UAV velocity control and communication decision making is critical to minimize the data packet losses at ground IoT nodes that result from overflowing buffers and transmission failures. However, online velocity control and communication decision making are challenging in UAV-enabled IoT networks, due to a UAV?s lack of up-to-date knowledge about the state of the nodes, e.g., the battery energy, buffer length, and channel conditions.Institute of Electrical and Electronics EngineersRepositório Científico do Instituto Politécnico do PortoLi, KaiNi, WeiTovar, EduardoJamalipour, Abbas20212120-01-01T00:00:00Z2021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/17146eng1556-608010.1109/MVT.2020.3039199metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:06:26Zoai:recipp.ipp.pt:10400.22/17146Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:36:46.607570Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach
title Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach
spellingShingle Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach
Li, Kai
Unmanned aerial vehicle
Internet-of-Things
Velocity control
Data capture
Deep reinforcement learning
title_short Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach
title_full Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach
title_fullStr Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach
title_full_unstemmed Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach
title_sort Online Velocity Control and Data Capture of Drones for the Internet of Things: An Onboard Deep Reinforcement Learning Approach
author Li, Kai
author_facet Li, Kai
Ni, Wei
Tovar, Eduardo
Jamalipour, Abbas
author_role author
author2 Ni, Wei
Tovar, Eduardo
Jamalipour, Abbas
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Li, Kai
Ni, Wei
Tovar, Eduardo
Jamalipour, Abbas
dc.subject.por.fl_str_mv Unmanned aerial vehicle
Internet-of-Things
Velocity control
Data capture
Deep reinforcement learning
topic Unmanned aerial vehicle
Internet-of-Things
Velocity control
Data capture
Deep reinforcement learning
description Applications of unmanned aerial vehicles (UAVs) for data collection are a promising means to extend Internet of Things (IoT) networks to remote and hostile areas and to locations where there is no access to power supplies. The adequate design of UAV velocity control and communication decision making is critical to minimize the data packet losses at ground IoT nodes that result from overflowing buffers and transmission failures. However, online velocity control and communication decision making are challenging in UAV-enabled IoT networks, due to a UAV?s lack of up-to-date knowledge about the state of the nodes, e.g., the battery energy, buffer length, and channel conditions.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
2120-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/17146
url http://hdl.handle.net/10400.22/17146
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1556-6080
10.1109/MVT.2020.3039199
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131458689826816