Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/16128 |
Resumo: | This letter studies the use of Unmanned Aerial Vehicles (UAVs) in Internet-of-Things (IoT) networks, where the UAV with microwave power transfer (MPT) capability is employed to hover over the area of interest, charging IoT nodes remotely and collecting their data. Scheduling MPT and data transmission is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In practice, the prior knowledge of the battery level and data queue length of the IoT nodes is not available at the UAV. A new onboard double Q-learning scheduling algorithm is proposed to optimally select the IoT node to be interrogated for data collection and MPT along the flight trajectory of the UAV, thereby minimizing asymptotically the packet loss of the IoT networks. Simulations confirm the superiority of our algorithm to Q-learning based alternatives in terms of packet loss and learning efficiency/speed. |
id |
RCAP_3a5e138959d216cd7cca9eef156ad9be |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/16128 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT NetworksIntelligent transportation systemsUnmanned vehiclesUnmanned aerial vehiclesThis letter studies the use of Unmanned Aerial Vehicles (UAVs) in Internet-of-Things (IoT) networks, where the UAV with microwave power transfer (MPT) capability is employed to hover over the area of interest, charging IoT nodes remotely and collecting their data. Scheduling MPT and data transmission is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In practice, the prior knowledge of the battery level and data queue length of the IoT nodes is not available at the UAV. A new onboard double Q-learning scheduling algorithm is proposed to optimally select the IoT node to be interrogated for data collection and MPT along the flight trajectory of the UAV, thereby minimizing asymptotically the packet loss of the IoT networks. Simulations confirm the superiority of our algorithm to Q-learning based alternatives in terms of packet loss and learning efficiency/speed.Institute of Electrical and Electronics EngineersRepositório Científico do Instituto Politécnico do PortoLi, KaiNi, WeiWei, BoTovar, Eduardo20202119-01-01T00:00:00Z2020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/16128eng2576-315610.1109/LNET.2020.2989130metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:02:22Zoai:recipp.ipp.pt:10400.22/16128Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:35:50.736742Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks |
title |
Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks |
spellingShingle |
Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks Li, Kai Intelligent transportation systems Unmanned vehicles Unmanned aerial vehicles |
title_short |
Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks |
title_full |
Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks |
title_fullStr |
Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks |
title_full_unstemmed |
Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks |
title_sort |
Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks |
author |
Li, Kai |
author_facet |
Li, Kai Ni, Wei Wei, Bo Tovar, Eduardo |
author_role |
author |
author2 |
Ni, Wei Wei, Bo Tovar, Eduardo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Li, Kai Ni, Wei Wei, Bo Tovar, Eduardo |
dc.subject.por.fl_str_mv |
Intelligent transportation systems Unmanned vehicles Unmanned aerial vehicles |
topic |
Intelligent transportation systems Unmanned vehicles Unmanned aerial vehicles |
description |
This letter studies the use of Unmanned Aerial Vehicles (UAVs) in Internet-of-Things (IoT) networks, where the UAV with microwave power transfer (MPT) capability is employed to hover over the area of interest, charging IoT nodes remotely and collecting their data. Scheduling MPT and data transmission is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In practice, the prior knowledge of the battery level and data queue length of the IoT nodes is not available at the UAV. A new onboard double Q-learning scheduling algorithm is proposed to optimally select the IoT node to be interrogated for data collection and MPT along the flight trajectory of the UAV, thereby minimizing asymptotically the packet loss of the IoT networks. Simulations confirm the superiority of our algorithm to Q-learning based alternatives in terms of packet loss and learning efficiency/speed. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2020-01-01T00:00:00Z 2119-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/16128 |
url |
http://hdl.handle.net/10400.22/16128 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2576-3156 10.1109/LNET.2020.2989130 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131449812582400 |