Environmental monitoring using drone images and convolutional neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/IGARSS.2018.8518581 http://hdl.handle.net/11449/231431 |
Resumo: | Recently, drone images have been used in a number of applications, mainly for pollution control and surveillance purposes. In this paper, we introduce the well-known Convolutional Neural Networks in the context of environmental monitoring using drone images, and we show their robustness in real-world images obtained from uncontrolled scenarios. We consider a transfer learning-based approach and compare two neural models, i.e., VGG16 and VGG19, to distinguish four classes: water, deforesting area, forest, and buildings. The results are analyzed by experts in the field and considered pretty much reasonable. |
id |
UNSP_3844c0a4341a46b79f0dbb118f775193 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/231431 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Environmental monitoring using drone images and convolutional neural networksConvolutional Neural NetworksDronesLand-use classificationRecently, drone images have been used in a number of applications, mainly for pollution control and surveillance purposes. In this paper, we introduce the well-known Convolutional Neural Networks in the context of environmental monitoring using drone images, and we show their robustness in real-world images obtained from uncontrolled scenarios. We consider a transfer learning-based approach and compare two neural models, i.e., VGG16 and VGG19, to distinguish four classes: water, deforesting area, forest, and buildings. The results are analyzed by experts in the field and considered pretty much reasonable.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Electrical Engineering Faculty of Engineering of Bauru Saõ Paulo State UniversityCorumbá Concessões S.A, SIA Trecho 3 Lote 1875Department of Computing Faculty of Sciences Saõ Paulo State UniversityCNPq: 306166/2014-3Saõ Paulo State UniversityCorumbá Concessões S.AThomazella, R.Castanho, J. E.Dotto, F. R.L.Rodrigues Júnior, O. P.Rosa, G. H.Marana, A. N.Papa, J. P.2022-04-29T08:45:25Z2022-04-29T08:45:25Z2018-10-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject8941-8944http://dx.doi.org/10.1109/IGARSS.2018.8518581International Geoscience and Remote Sensing Symposium (IGARSS), v. 2018-July, p. 8941-8944.http://hdl.handle.net/11449/23143110.1109/IGARSS.2018.85185812-s2.0-85064201349Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Geoscience and Remote Sensing Symposium (IGARSS)info:eu-repo/semantics/openAccess2024-06-28T13:34:42Zoai:repositorio.unesp.br:11449/231431Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:49:20.438025Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Environmental monitoring using drone images and convolutional neural networks |
title |
Environmental monitoring using drone images and convolutional neural networks |
spellingShingle |
Environmental monitoring using drone images and convolutional neural networks Thomazella, R. Convolutional Neural Networks Drones Land-use classification |
title_short |
Environmental monitoring using drone images and convolutional neural networks |
title_full |
Environmental monitoring using drone images and convolutional neural networks |
title_fullStr |
Environmental monitoring using drone images and convolutional neural networks |
title_full_unstemmed |
Environmental monitoring using drone images and convolutional neural networks |
title_sort |
Environmental monitoring using drone images and convolutional neural networks |
author |
Thomazella, R. |
author_facet |
Thomazella, R. Castanho, J. E. Dotto, F. R.L. Rodrigues Júnior, O. P. Rosa, G. H. Marana, A. N. Papa, J. P. |
author_role |
author |
author2 |
Castanho, J. E. Dotto, F. R.L. Rodrigues Júnior, O. P. Rosa, G. H. Marana, A. N. Papa, J. P. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Saõ Paulo State University Corumbá Concessões S.A |
dc.contributor.author.fl_str_mv |
Thomazella, R. Castanho, J. E. Dotto, F. R.L. Rodrigues Júnior, O. P. Rosa, G. H. Marana, A. N. Papa, J. P. |
dc.subject.por.fl_str_mv |
Convolutional Neural Networks Drones Land-use classification |
topic |
Convolutional Neural Networks Drones Land-use classification |
description |
Recently, drone images have been used in a number of applications, mainly for pollution control and surveillance purposes. In this paper, we introduce the well-known Convolutional Neural Networks in the context of environmental monitoring using drone images, and we show their robustness in real-world images obtained from uncontrolled scenarios. We consider a transfer learning-based approach and compare two neural models, i.e., VGG16 and VGG19, to distinguish four classes: water, deforesting area, forest, and buildings. The results are analyzed by experts in the field and considered pretty much reasonable. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10-31 2022-04-29T08:45:25Z 2022-04-29T08:45:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/IGARSS.2018.8518581 International Geoscience and Remote Sensing Symposium (IGARSS), v. 2018-July, p. 8941-8944. http://hdl.handle.net/11449/231431 10.1109/IGARSS.2018.8518581 2-s2.0-85064201349 |
url |
http://dx.doi.org/10.1109/IGARSS.2018.8518581 http://hdl.handle.net/11449/231431 |
identifier_str_mv |
International Geoscience and Remote Sensing Symposium (IGARSS), v. 2018-July, p. 8941-8944. 10.1109/IGARSS.2018.8518581 2-s2.0-85064201349 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Geoscience and Remote Sensing Symposium (IGARSS) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
8941-8944 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129123629924352 |