Environmental monitoring using drone images and convolutional neural networks

Detalhes bibliográficos
Autor(a) principal: Thomazella, R.
Data de Publicação: 2018
Outros Autores: Castanho, J. E., Dotto, F. R.L., Rodrigues Júnior, O. P., Rosa, G. H., Marana, A. N., Papa, J. P.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/IGARSS.2018.8518581
http://hdl.handle.net/11449/231431
Resumo: Recently, drone images have been used in a number of applications, mainly for pollution control and surveillance purposes. In this paper, we introduce the well-known Convolutional Neural Networks in the context of environmental monitoring using drone images, and we show their robustness in real-world images obtained from uncontrolled scenarios. We consider a transfer learning-based approach and compare two neural models, i.e., VGG16 and VGG19, to distinguish four classes: water, deforesting area, forest, and buildings. The results are analyzed by experts in the field and considered pretty much reasonable.
id UNSP_3844c0a4341a46b79f0dbb118f775193
oai_identifier_str oai:repositorio.unesp.br:11449/231431
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Environmental monitoring using drone images and convolutional neural networksConvolutional Neural NetworksDronesLand-use classificationRecently, drone images have been used in a number of applications, mainly for pollution control and surveillance purposes. In this paper, we introduce the well-known Convolutional Neural Networks in the context of environmental monitoring using drone images, and we show their robustness in real-world images obtained from uncontrolled scenarios. We consider a transfer learning-based approach and compare two neural models, i.e., VGG16 and VGG19, to distinguish four classes: water, deforesting area, forest, and buildings. The results are analyzed by experts in the field and considered pretty much reasonable.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Electrical Engineering Faculty of Engineering of Bauru Saõ Paulo State UniversityCorumbá Concessões S.A, SIA Trecho 3 Lote 1875Department of Computing Faculty of Sciences Saõ Paulo State UniversityCNPq: 306166/2014-3Saõ Paulo State UniversityCorumbá Concessões S.AThomazella, R.Castanho, J. E.Dotto, F. R.L.Rodrigues Júnior, O. P.Rosa, G. H.Marana, A. N.Papa, J. P.2022-04-29T08:45:25Z2022-04-29T08:45:25Z2018-10-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject8941-8944http://dx.doi.org/10.1109/IGARSS.2018.8518581International Geoscience and Remote Sensing Symposium (IGARSS), v. 2018-July, p. 8941-8944.http://hdl.handle.net/11449/23143110.1109/IGARSS.2018.85185812-s2.0-85064201349Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Geoscience and Remote Sensing Symposium (IGARSS)info:eu-repo/semantics/openAccess2024-06-28T13:34:42Zoai:repositorio.unesp.br:11449/231431Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:49:20.438025Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Environmental monitoring using drone images and convolutional neural networks
title Environmental monitoring using drone images and convolutional neural networks
spellingShingle Environmental monitoring using drone images and convolutional neural networks
Thomazella, R.
Convolutional Neural Networks
Drones
Land-use classification
title_short Environmental monitoring using drone images and convolutional neural networks
title_full Environmental monitoring using drone images and convolutional neural networks
title_fullStr Environmental monitoring using drone images and convolutional neural networks
title_full_unstemmed Environmental monitoring using drone images and convolutional neural networks
title_sort Environmental monitoring using drone images and convolutional neural networks
author Thomazella, R.
author_facet Thomazella, R.
Castanho, J. E.
Dotto, F. R.L.
Rodrigues Júnior, O. P.
Rosa, G. H.
Marana, A. N.
Papa, J. P.
author_role author
author2 Castanho, J. E.
Dotto, F. R.L.
Rodrigues Júnior, O. P.
Rosa, G. H.
Marana, A. N.
Papa, J. P.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Saõ Paulo State University
Corumbá Concessões S.A
dc.contributor.author.fl_str_mv Thomazella, R.
Castanho, J. E.
Dotto, F. R.L.
Rodrigues Júnior, O. P.
Rosa, G. H.
Marana, A. N.
Papa, J. P.
dc.subject.por.fl_str_mv Convolutional Neural Networks
Drones
Land-use classification
topic Convolutional Neural Networks
Drones
Land-use classification
description Recently, drone images have been used in a number of applications, mainly for pollution control and surveillance purposes. In this paper, we introduce the well-known Convolutional Neural Networks in the context of environmental monitoring using drone images, and we show their robustness in real-world images obtained from uncontrolled scenarios. We consider a transfer learning-based approach and compare two neural models, i.e., VGG16 and VGG19, to distinguish four classes: water, deforesting area, forest, and buildings. The results are analyzed by experts in the field and considered pretty much reasonable.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-31
2022-04-29T08:45:25Z
2022-04-29T08:45:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/IGARSS.2018.8518581
International Geoscience and Remote Sensing Symposium (IGARSS), v. 2018-July, p. 8941-8944.
http://hdl.handle.net/11449/231431
10.1109/IGARSS.2018.8518581
2-s2.0-85064201349
url http://dx.doi.org/10.1109/IGARSS.2018.8518581
http://hdl.handle.net/11449/231431
identifier_str_mv International Geoscience and Remote Sensing Symposium (IGARSS), v. 2018-July, p. 8941-8944.
10.1109/IGARSS.2018.8518581
2-s2.0-85064201349
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Geoscience and Remote Sensing Symposium (IGARSS)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 8941-8944
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129123629924352