ENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/185094 |
Resumo: | Recently, drone images have been used in a number of applications, mainly for pollution control and surveillance purposes. In this paper, we introduce the well-known Convolutional Neural Networks in the context of environmental monitoring using drone images, and we show their robustness in real-world images obtained from uncontrolled scenarios. We consider a transfer learning-based approach and compare two neural models, i.e., VGG16 and VGG19, to distinguish four classes: water, deforesting area, forest, and buildings. The results are analyzed by experts in the field and considered pretty much reasonable. |
id |
UNSP_3db295a84cdcec9252fcd1231284746c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/185094 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
ENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKSLand-use classificationDronesConvolutional Neural NetworksRecently, drone images have been used in a number of applications, mainly for pollution control and surveillance purposes. In this paper, we introduce the well-known Convolutional Neural Networks in the context of environmental monitoring using drone images, and we show their robustness in real-world images obtained from uncontrolled scenarios. We consider a transfer learning-based approach and compare two neural models, i.e., VGG16 and VGG19, to distinguish four classes: water, deforesting area, forest, and buildings. The results are analyzed by experts in the field and considered pretty much reasonable.Corumba Concessoes S.A.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Intel AI AcademySao Paulo State Univ, Dept Elect Engn, Fac Engn Bauru, Sao Paulo, SP, BrazilCorumba Concessoes SA, SIA Trecho 3 Lote 1875 Sia Sul, BR-71200030 Brasilia, DF, BrazilSao Paulo State Univ, Dept Comp, Fac Sci, Sao Paulo, SP, BrazilSao Paulo State Univ, Dept Elect Engn, Fac Engn Bauru, Sao Paulo, SP, BrazilSao Paulo State Univ, Dept Comp, Fac Sci, Sao Paulo, SP, BrazilCorumba Concessoes S.A.: ANEEL PD-2262-1602/2016CNPq: 306166/2014-3CNPq: 307066/2017-7FAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2015/25739-4FAPESP: 2016/19403-6Intel AI Academy: 2597.2017IeeeUniversidade Estadual Paulista (Unesp)Corumba Concessoes SAThomazella, R. [UNESP]Castanho, J. E. [UNESP]Dotto, F. R. L. [UNESP]Rodrigues Junior, O. P.Rosa, G. H. [UNESP]Marana, A. N. [UNESP]Papa, J. P. [UNESP]IEEE2019-10-04T12:32:39Z2019-10-04T12:32:39Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject8941-8944Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium. New York: Ieee, p. 8941-8944, 2018.2153-6996http://hdl.handle.net/11449/185094WOS:000451039808130Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIgarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposiuminfo:eu-repo/semantics/openAccess2024-06-28T13:34:43Zoai:repositorio.unesp.br:11449/185094Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:06:04.442451Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
ENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKS |
title |
ENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKS |
spellingShingle |
ENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKS Thomazella, R. [UNESP] Land-use classification Drones Convolutional Neural Networks |
title_short |
ENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKS |
title_full |
ENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKS |
title_fullStr |
ENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKS |
title_full_unstemmed |
ENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKS |
title_sort |
ENVIRONMENTAL MONITORING USING DRONE IMAGES AND CONVOLUTIONAL NEURAL NETWORKS |
author |
Thomazella, R. [UNESP] |
author_facet |
Thomazella, R. [UNESP] Castanho, J. E. [UNESP] Dotto, F. R. L. [UNESP] Rodrigues Junior, O. P. Rosa, G. H. [UNESP] Marana, A. N. [UNESP] Papa, J. P. [UNESP] IEEE |
author_role |
author |
author2 |
Castanho, J. E. [UNESP] Dotto, F. R. L. [UNESP] Rodrigues Junior, O. P. Rosa, G. H. [UNESP] Marana, A. N. [UNESP] Papa, J. P. [UNESP] IEEE |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Corumba Concessoes SA |
dc.contributor.author.fl_str_mv |
Thomazella, R. [UNESP] Castanho, J. E. [UNESP] Dotto, F. R. L. [UNESP] Rodrigues Junior, O. P. Rosa, G. H. [UNESP] Marana, A. N. [UNESP] Papa, J. P. [UNESP] IEEE |
dc.subject.por.fl_str_mv |
Land-use classification Drones Convolutional Neural Networks |
topic |
Land-use classification Drones Convolutional Neural Networks |
description |
Recently, drone images have been used in a number of applications, mainly for pollution control and surveillance purposes. In this paper, we introduce the well-known Convolutional Neural Networks in the context of environmental monitoring using drone images, and we show their robustness in real-world images obtained from uncontrolled scenarios. We consider a transfer learning-based approach and compare two neural models, i.e., VGG16 and VGG19, to distinguish four classes: water, deforesting area, forest, and buildings. The results are analyzed by experts in the field and considered pretty much reasonable. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 2019-10-04T12:32:39Z 2019-10-04T12:32:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium. New York: Ieee, p. 8941-8944, 2018. 2153-6996 http://hdl.handle.net/11449/185094 WOS:000451039808130 |
identifier_str_mv |
Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium. New York: Ieee, p. 8941-8944, 2018. 2153-6996 WOS:000451039808130 |
url |
http://hdl.handle.net/11449/185094 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Igarss 2018 - 2018 Ieee International Geoscience And Remote Sensing Symposium |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
8941-8944 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129391860908032 |