Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/125597 |
Resumo: | This work was partially supported by the Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UIDB/MAT/00297/2020 (Centro de Matematica e Aplicacoes) and by the SEP-CONACYT project A1-S-8793 (Mexico). |
id |
RCAP_bc2f3a8828d70770c312ee85106e9e85 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/125597 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliersBanach algebraC-algebraEquivalence at infinityFourier convolution operatorFourier multiplierSlowly oscillating functionAnalysisAlgebra and Number TheoryThis work was partially supported by the Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UIDB/MAT/00297/2020 (Centro de Matematica e Aplicacoes) and by the SEP-CONACYT project A1-S-8793 (Mexico).Let MX(R) be the Banach algebra of all Fourier multipliers on a Banach function space X(R) such that the Hardy–Littlewood maximal operator is bounded on X(R) and on its associate space X′(R). For two sets Ψ, Ω⊂ MX(R), let ΨΩ be the set of those c∈ Ψ for which there exists d∈ Ω such that the multiplier norm of χR\[-N,N](c- d) tends to zero as N→ ∞. In this case, we say that the Fourier multiplier c is equivalent at infinity to the Fourier multiplier d. We show that if Ω is a unital Banach subalgebra of MX(R) consisting of nice Fourier multipliers (for instance, continuous or slowly oscillating in certain sense) and Ψ is an arbitrary unital Banach subalgebra of MX(R), then ΨΩ is a also a unital Banach subalgebra of MX(R).CMA - Centro de Matemática e AplicaçõesDM - Departamento de MatemáticaRUNFernandes, Cláudio A.Karlovich, Alexei YuKarlovich, Yuri I.2022-04-03T00:30:58Z2021-042021-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/125597eng1735-8787PURE: 27880645https://doi.org/10.1007/s43037-020-00111-9info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:06:28Zoai:run.unl.pt:10362/125597Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:45:43.673239Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers |
title |
Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers |
spellingShingle |
Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers Fernandes, Cláudio A. Banach algebra C-algebra Equivalence at infinity Fourier convolution operator Fourier multiplier Slowly oscillating function Analysis Algebra and Number Theory |
title_short |
Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers |
title_full |
Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers |
title_fullStr |
Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers |
title_full_unstemmed |
Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers |
title_sort |
Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers |
author |
Fernandes, Cláudio A. |
author_facet |
Fernandes, Cláudio A. Karlovich, Alexei Yu Karlovich, Yuri I. |
author_role |
author |
author2 |
Karlovich, Alexei Yu Karlovich, Yuri I. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
CMA - Centro de Matemática e Aplicações DM - Departamento de Matemática RUN |
dc.contributor.author.fl_str_mv |
Fernandes, Cláudio A. Karlovich, Alexei Yu Karlovich, Yuri I. |
dc.subject.por.fl_str_mv |
Banach algebra C-algebra Equivalence at infinity Fourier convolution operator Fourier multiplier Slowly oscillating function Analysis Algebra and Number Theory |
topic |
Banach algebra C-algebra Equivalence at infinity Fourier convolution operator Fourier multiplier Slowly oscillating function Analysis Algebra and Number Theory |
description |
This work was partially supported by the Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UIDB/MAT/00297/2020 (Centro de Matematica e Aplicacoes) and by the SEP-CONACYT project A1-S-8793 (Mexico). |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04 2021-04-01T00:00:00Z 2022-04-03T00:30:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/125597 |
url |
http://hdl.handle.net/10362/125597 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1735-8787 PURE: 27880645 https://doi.org/10.1007/s43037-020-00111-9 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138062034272256 |