Benzo[a]pyrene and beta-naphthoflavone mutagenic activation by European eel (Anguilla anguilla L.) S9 liver fraction

Detalhes bibliográficos
Autor(a) principal: Maria, V. L.
Data de Publicação: 2002
Outros Autores: Correia, A. C., Santos, M. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/27582
Resumo: Is Anguilla anguilla L. (eel) liver ethoxyresorufin O-deethylase (EROD) induction absolutely necessary in order to convert promutagens as benzo[a]pyrene (BaP) into a mutagenic compound? Eels were exposed for 8 h to clean (control) and 0.3 microM beta-naphthoflavone (BNF)-contaminated water. The 8-h exposure to 0.3 microM BNF brought about a very high EROD induction (10 pmol/min/mg protein) compared to control animals (1 pmol/min/mg protein). The Ames test (Maron and Ames, 1983) was carried out with Salmonella typhimurium TA 98 strain (TA98 His-) and eel isolated S9 liver fraction was used as a metabolic BaP activator. The BaP and BNF dose range concentrations tested were 0 (blank), 0.015, 0.08, 0.15, 0.38, 0.75, 1.5, 3.8, and 7.5 microM/plate and 0 (blank), 0.412, 1.235, 3.704, 11.1, 33.0, and 100 nM BNF, respectively. A dose-response relationship between BaP concentration and mutagenic activity was observed in the presence of S9 fractions in control and 0.3 microM BNF-exposed eels. Significant positive results, as TA98 His+ revertants, were observed at 0.38, 0.75, 1.5, 3.8, and 7.5 microM BaP/plate induced by BNF S9 fractions. Significant BaP mutagenic activation by liver control S9 was detected only at 1.5, 3.8, and 7.5 microM/plate. The BaP 1.5, 3.8, and 7.5 microM/plate mutagenic activation by BNF S9 and control S9 were not significantly different. Relative to BNF activation, it was only possible to detect His+ reversion at 11.1 nM BNF concentration with 0.3 microM BNF-induced S9. The above results demonstrate that the eel S9 liver fraction has the capacity to biotransform high BaP concentrations and convert it into a mutagenic compound with or without previous liver BNF biotransformation induction. The same does not apply to low BaP concentrations, where liver S9 induction by BNF is necessary to promote mutagenesis.
id RCAP_c69b03a60fee4d73e96c2cd8f38f8768
oai_identifier_str oai:ria.ua.pt:10773/27582
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Benzo[a]pyrene and beta-naphthoflavone mutagenic activation by European eel (Anguilla anguilla L.) S9 liver fractionMutagenesisAmes testFish liver s9BaPBNFERODAnguilla anguilla L.Is Anguilla anguilla L. (eel) liver ethoxyresorufin O-deethylase (EROD) induction absolutely necessary in order to convert promutagens as benzo[a]pyrene (BaP) into a mutagenic compound? Eels were exposed for 8 h to clean (control) and 0.3 microM beta-naphthoflavone (BNF)-contaminated water. The 8-h exposure to 0.3 microM BNF brought about a very high EROD induction (10 pmol/min/mg protein) compared to control animals (1 pmol/min/mg protein). The Ames test (Maron and Ames, 1983) was carried out with Salmonella typhimurium TA 98 strain (TA98 His-) and eel isolated S9 liver fraction was used as a metabolic BaP activator. The BaP and BNF dose range concentrations tested were 0 (blank), 0.015, 0.08, 0.15, 0.38, 0.75, 1.5, 3.8, and 7.5 microM/plate and 0 (blank), 0.412, 1.235, 3.704, 11.1, 33.0, and 100 nM BNF, respectively. A dose-response relationship between BaP concentration and mutagenic activity was observed in the presence of S9 fractions in control and 0.3 microM BNF-exposed eels. Significant positive results, as TA98 His+ revertants, were observed at 0.38, 0.75, 1.5, 3.8, and 7.5 microM BaP/plate induced by BNF S9 fractions. Significant BaP mutagenic activation by liver control S9 was detected only at 1.5, 3.8, and 7.5 microM/plate. The BaP 1.5, 3.8, and 7.5 microM/plate mutagenic activation by BNF S9 and control S9 were not significantly different. Relative to BNF activation, it was only possible to detect His+ reversion at 11.1 nM BNF concentration with 0.3 microM BNF-induced S9. The above results demonstrate that the eel S9 liver fraction has the capacity to biotransform high BaP concentrations and convert it into a mutagenic compound with or without previous liver BNF biotransformation induction. The same does not apply to low BaP concentrations, where liver S9 induction by BNF is necessary to promote mutagenesis.Elsevier2020-02-18T15:29:21Z2002-09-01T00:00:00Z2002-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/27582eng0147-651310.1006/eesa.2001.2204Maria, V. L.Correia, A. C.Santos, M. A.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:53:25Zoai:ria.ua.pt:10773/27582Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:00:19.045821Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Benzo[a]pyrene and beta-naphthoflavone mutagenic activation by European eel (Anguilla anguilla L.) S9 liver fraction
title Benzo[a]pyrene and beta-naphthoflavone mutagenic activation by European eel (Anguilla anguilla L.) S9 liver fraction
spellingShingle Benzo[a]pyrene and beta-naphthoflavone mutagenic activation by European eel (Anguilla anguilla L.) S9 liver fraction
Maria, V. L.
Mutagenesis
Ames test
Fish liver s9
BaP
BNF
EROD
Anguilla anguilla L.
title_short Benzo[a]pyrene and beta-naphthoflavone mutagenic activation by European eel (Anguilla anguilla L.) S9 liver fraction
title_full Benzo[a]pyrene and beta-naphthoflavone mutagenic activation by European eel (Anguilla anguilla L.) S9 liver fraction
title_fullStr Benzo[a]pyrene and beta-naphthoflavone mutagenic activation by European eel (Anguilla anguilla L.) S9 liver fraction
title_full_unstemmed Benzo[a]pyrene and beta-naphthoflavone mutagenic activation by European eel (Anguilla anguilla L.) S9 liver fraction
title_sort Benzo[a]pyrene and beta-naphthoflavone mutagenic activation by European eel (Anguilla anguilla L.) S9 liver fraction
author Maria, V. L.
author_facet Maria, V. L.
Correia, A. C.
Santos, M. A.
author_role author
author2 Correia, A. C.
Santos, M. A.
author2_role author
author
dc.contributor.author.fl_str_mv Maria, V. L.
Correia, A. C.
Santos, M. A.
dc.subject.por.fl_str_mv Mutagenesis
Ames test
Fish liver s9
BaP
BNF
EROD
Anguilla anguilla L.
topic Mutagenesis
Ames test
Fish liver s9
BaP
BNF
EROD
Anguilla anguilla L.
description Is Anguilla anguilla L. (eel) liver ethoxyresorufin O-deethylase (EROD) induction absolutely necessary in order to convert promutagens as benzo[a]pyrene (BaP) into a mutagenic compound? Eels were exposed for 8 h to clean (control) and 0.3 microM beta-naphthoflavone (BNF)-contaminated water. The 8-h exposure to 0.3 microM BNF brought about a very high EROD induction (10 pmol/min/mg protein) compared to control animals (1 pmol/min/mg protein). The Ames test (Maron and Ames, 1983) was carried out with Salmonella typhimurium TA 98 strain (TA98 His-) and eel isolated S9 liver fraction was used as a metabolic BaP activator. The BaP and BNF dose range concentrations tested were 0 (blank), 0.015, 0.08, 0.15, 0.38, 0.75, 1.5, 3.8, and 7.5 microM/plate and 0 (blank), 0.412, 1.235, 3.704, 11.1, 33.0, and 100 nM BNF, respectively. A dose-response relationship between BaP concentration and mutagenic activity was observed in the presence of S9 fractions in control and 0.3 microM BNF-exposed eels. Significant positive results, as TA98 His+ revertants, were observed at 0.38, 0.75, 1.5, 3.8, and 7.5 microM BaP/plate induced by BNF S9 fractions. Significant BaP mutagenic activation by liver control S9 was detected only at 1.5, 3.8, and 7.5 microM/plate. The BaP 1.5, 3.8, and 7.5 microM/plate mutagenic activation by BNF S9 and control S9 were not significantly different. Relative to BNF activation, it was only possible to detect His+ reversion at 11.1 nM BNF concentration with 0.3 microM BNF-induced S9. The above results demonstrate that the eel S9 liver fraction has the capacity to biotransform high BaP concentrations and convert it into a mutagenic compound with or without previous liver BNF biotransformation induction. The same does not apply to low BaP concentrations, where liver S9 induction by BNF is necessary to promote mutagenesis.
publishDate 2002
dc.date.none.fl_str_mv 2002-09-01T00:00:00Z
2002-09
2020-02-18T15:29:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/27582
url http://hdl.handle.net/10773/27582
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0147-6513
10.1006/eesa.2001.2204
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137658552713216