Multi-goal navigation of a mobile robot using hierarchical reinforcement learning

Detalhes bibliográficos
Autor(a) principal: Silva, Marco António Gomes
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/32346
Resumo: Currently, there is a growing interest in the development of autonomous navigation technologies for applications in domestic, urban and industrial environments. Machine Learning tools such as neural networks, reinforcement learning and deep learning have been the main choice to solve many problems associated with autonomous mobile robot navigation. This dissertation mainly focus on solving the problem of mobile robot navigation in maze-like environments with multiple goals. The center point here is to apply a hierarchical structure of reinforcement learning algorithms (QLearning and R-Learning) to a robot in a continuous environment so that it can navigate in a maze. Both the state-space and the action-space are obtained by discretizing the data collected by the robot in order to prevent them from being too large. The implementation is done with a hierarchical approach, which is a structure that allows to split the complexity of the problem into many easier sub-problems, ending up with a set of lower-level tasks followed by a higher-level one. The robot performance is evaluated in two maze-like environments, showing that the hierarchical approach is a very feasible solution to reduce the complexity of the problem. Besides that, two more scenarios are presented: a multi-goal situation where the robot navigates across multiple goals relying on the topological representation of the environment and the experience memorized during learning and a dynamic behaviour situation where the robot must adapt its policies according to the changes that happen in the environment (such as blocked paths). In the end, both scenarios were successfully accomplished and it has been concluded that a hierarchical approach has many advantages when compared to a classic reinforcement learning approach.
id RCAP_c8ffe65b05f2701da53425c9fd5dc5c3
oai_identifier_str oai:ria.ua.pt:10773/32346
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Multi-goal navigation of a mobile robot using hierarchical reinforcement learningMobile roboticsTopological representationMulti-goal navigationReinforcement learningHierarchical structureMaze-Like environmentCurrently, there is a growing interest in the development of autonomous navigation technologies for applications in domestic, urban and industrial environments. Machine Learning tools such as neural networks, reinforcement learning and deep learning have been the main choice to solve many problems associated with autonomous mobile robot navigation. This dissertation mainly focus on solving the problem of mobile robot navigation in maze-like environments with multiple goals. The center point here is to apply a hierarchical structure of reinforcement learning algorithms (QLearning and R-Learning) to a robot in a continuous environment so that it can navigate in a maze. Both the state-space and the action-space are obtained by discretizing the data collected by the robot in order to prevent them from being too large. The implementation is done with a hierarchical approach, which is a structure that allows to split the complexity of the problem into many easier sub-problems, ending up with a set of lower-level tasks followed by a higher-level one. The robot performance is evaluated in two maze-like environments, showing that the hierarchical approach is a very feasible solution to reduce the complexity of the problem. Besides that, two more scenarios are presented: a multi-goal situation where the robot navigates across multiple goals relying on the topological representation of the environment and the experience memorized during learning and a dynamic behaviour situation where the robot must adapt its policies according to the changes that happen in the environment (such as blocked paths). In the end, both scenarios were successfully accomplished and it has been concluded that a hierarchical approach has many advantages when compared to a classic reinforcement learning approach.Atualmente, há um crescente interesse no desenvolvimento de tecnologias de navegação autónoma para aplicações em ambientes domésticos, urbanos e industriais. Ferramentas de Aprendizagem Automática, como redes neurais, aprendizagem por reforço e aprendizagem profunda têm sido a escolha principal para resolver muitos problemas associados à navegação autónoma de robôs móveis. Esta dissertação tem como foco principal a solução do problema de navegação de robôs móveis em ambientes tipo labirínto com múltiplos objetivos. O ponto central aqui é aplicar uma estrutura hierárquica de algoritmos de aprendizagem por reforço (Q-Learning e R-Learning) a um robô num ambiente contínuo para que ele possa navegar num labirinto. Tanto o espaço de estados quanto o espaço de ações são obtidos através da discretização dos dados recolhidos pelo robô para evitar que estes sejam demasiado extensos. A implementação é feita com uma abordagem hierárquica, que é uma estrutura que permite dividir a complexidade do problema em vários subproblemas mais fáceis, ficando com um conjunto de tarefas de baixo-nível seguido por um de alto-nível. O desempenho do robô é avaliado em dois ambientes tipo labirinto, mostrando que a abordagem hierárquica é uma solução bastante viável para reduzir a complexidade do problema. Além disso, dois cenários diferentes são apresentados: uma situação de multi-objetivo onde o robô navega por múltiplos objetivos usando a representação topológica do ambiente e a experiência memorizada durante a aprendizagem e uma situação de comportamento dinâmico onde o robô deve adaptar suas políticas de acordo com os mudanças que acontecem no ambiente (como caminhos bloqueados). No final, ambos os cenários foram realizados com sucesso e concluiu-se que uma abordagem hierárquica tem muitas vantagens quando comparada a uma abordagem de aprendizagem por reforço clássica.2021-10-12T09:15:36Z2021-07-28T00:00:00Z2021-07-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/32346engSilva, Marco António Gomesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:02:28Zoai:ria.ua.pt:10773/32346Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:04:04.806112Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Multi-goal navigation of a mobile robot using hierarchical reinforcement learning
title Multi-goal navigation of a mobile robot using hierarchical reinforcement learning
spellingShingle Multi-goal navigation of a mobile robot using hierarchical reinforcement learning
Silva, Marco António Gomes
Mobile robotics
Topological representation
Multi-goal navigation
Reinforcement learning
Hierarchical structure
Maze-Like environment
title_short Multi-goal navigation of a mobile robot using hierarchical reinforcement learning
title_full Multi-goal navigation of a mobile robot using hierarchical reinforcement learning
title_fullStr Multi-goal navigation of a mobile robot using hierarchical reinforcement learning
title_full_unstemmed Multi-goal navigation of a mobile robot using hierarchical reinforcement learning
title_sort Multi-goal navigation of a mobile robot using hierarchical reinforcement learning
author Silva, Marco António Gomes
author_facet Silva, Marco António Gomes
author_role author
dc.contributor.author.fl_str_mv Silva, Marco António Gomes
dc.subject.por.fl_str_mv Mobile robotics
Topological representation
Multi-goal navigation
Reinforcement learning
Hierarchical structure
Maze-Like environment
topic Mobile robotics
Topological representation
Multi-goal navigation
Reinforcement learning
Hierarchical structure
Maze-Like environment
description Currently, there is a growing interest in the development of autonomous navigation technologies for applications in domestic, urban and industrial environments. Machine Learning tools such as neural networks, reinforcement learning and deep learning have been the main choice to solve many problems associated with autonomous mobile robot navigation. This dissertation mainly focus on solving the problem of mobile robot navigation in maze-like environments with multiple goals. The center point here is to apply a hierarchical structure of reinforcement learning algorithms (QLearning and R-Learning) to a robot in a continuous environment so that it can navigate in a maze. Both the state-space and the action-space are obtained by discretizing the data collected by the robot in order to prevent them from being too large. The implementation is done with a hierarchical approach, which is a structure that allows to split the complexity of the problem into many easier sub-problems, ending up with a set of lower-level tasks followed by a higher-level one. The robot performance is evaluated in two maze-like environments, showing that the hierarchical approach is a very feasible solution to reduce the complexity of the problem. Besides that, two more scenarios are presented: a multi-goal situation where the robot navigates across multiple goals relying on the topological representation of the environment and the experience memorized during learning and a dynamic behaviour situation where the robot must adapt its policies according to the changes that happen in the environment (such as blocked paths). In the end, both scenarios were successfully accomplished and it has been concluded that a hierarchical approach has many advantages when compared to a classic reinforcement learning approach.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-12T09:15:36Z
2021-07-28T00:00:00Z
2021-07-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/32346
url http://hdl.handle.net/10773/32346
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137696474464256