Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs

Detalhes bibliográficos
Autor(a) principal: Ramos, Sérgio
Data de Publicação: 2007
Outros Autores: Figueiredo, Vera, Rodrigues, Fátima, Pinheiro, Raul, Vale, Zita
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/1517
Resumo: With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.
id RCAP_c9b001215afca667433fa975d046a823
oai_identifier_str oai:recipp.ipp.pt:10400.22/1517
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffsElectricity marketsLoad profilesData miningHierarchical clusteringClassificationWith the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.CRL PublishingRepositório Científico do Instituto Politécnico do PortoRamos, SérgioFigueiredo, VeraRodrigues, FátimaPinheiro, RaulVale, Zita2013-05-03T13:54:55Z20072013-04-12T10:44:51Z2007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/1517eng1472-891510.26537/r1517info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:40:41Zoai:recipp.ipp.pt:10400.22/1517Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:22:31.306515Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs
title Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs
spellingShingle Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs
Ramos, Sérgio
Electricity markets
Load profiles
Data mining
Hierarchical clustering
Classification
title_short Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs
title_full Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs
title_fullStr Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs
title_full_unstemmed Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs
title_sort Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs
author Ramos, Sérgio
author_facet Ramos, Sérgio
Figueiredo, Vera
Rodrigues, Fátima
Pinheiro, Raul
Vale, Zita
author_role author
author2 Figueiredo, Vera
Rodrigues, Fátima
Pinheiro, Raul
Vale, Zita
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Ramos, Sérgio
Figueiredo, Vera
Rodrigues, Fátima
Pinheiro, Raul
Vale, Zita
dc.subject.por.fl_str_mv Electricity markets
Load profiles
Data mining
Hierarchical clustering
Classification
topic Electricity markets
Load profiles
Data mining
Hierarchical clustering
Classification
description With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.
publishDate 2007
dc.date.none.fl_str_mv 2007
2007-01-01T00:00:00Z
2013-05-03T13:54:55Z
2013-04-12T10:44:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/1517
url http://hdl.handle.net/10400.22/1517
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1472-8915
10.26537/r1517
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CRL Publishing
publisher.none.fl_str_mv CRL Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131320336515072