Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/1517 |
Resumo: | With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm. |
id |
RCAP_c9b001215afca667433fa975d046a823 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/1517 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffsElectricity marketsLoad profilesData miningHierarchical clusteringClassificationWith the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.CRL PublishingRepositório Científico do Instituto Politécnico do PortoRamos, SérgioFigueiredo, VeraRodrigues, FátimaPinheiro, RaulVale, Zita2013-05-03T13:54:55Z20072013-04-12T10:44:51Z2007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/1517eng1472-891510.26537/r1517info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:40:41Zoai:recipp.ipp.pt:10400.22/1517Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:22:31.306515Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs |
title |
Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs |
spellingShingle |
Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs Ramos, Sérgio Electricity markets Load profiles Data mining Hierarchical clustering Classification |
title_short |
Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs |
title_full |
Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs |
title_fullStr |
Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs |
title_full_unstemmed |
Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs |
title_sort |
Knowledge extraction from medium voltage load diagrams to support the definition of electrical tariffs |
author |
Ramos, Sérgio |
author_facet |
Ramos, Sérgio Figueiredo, Vera Rodrigues, Fátima Pinheiro, Raul Vale, Zita |
author_role |
author |
author2 |
Figueiredo, Vera Rodrigues, Fátima Pinheiro, Raul Vale, Zita |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Ramos, Sérgio Figueiredo, Vera Rodrigues, Fátima Pinheiro, Raul Vale, Zita |
dc.subject.por.fl_str_mv |
Electricity markets Load profiles Data mining Hierarchical clustering Classification |
topic |
Electricity markets Load profiles Data mining Hierarchical clustering Classification |
description |
With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2007-01-01T00:00:00Z 2013-05-03T13:54:55Z 2013-04-12T10:44:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/1517 |
url |
http://hdl.handle.net/10400.22/1517 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1472-8915 10.26537/r1517 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
CRL Publishing |
publisher.none.fl_str_mv |
CRL Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131320336515072 |