A GARCH-based method for clustering of financial time series: International stock markets evidence

Detalhes bibliográficos
Autor(a) principal: Caiado, Jorge
Data de Publicação: 2007
Outros Autores: Crato, Nuno
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/27691
Resumo: In this paper, we introduce a volatility-based method for clustering analysis of financial time series. Using the generalized autoregressive conditional heteroskedasticity (GARCH) models we estimate the distances between the stock return volatilities. The proposed method uses the volatility behavior of the time series and solves the problem of different lengths. As an illustrative example, we investigate the similarities among major international stock markets using daily return series with different sample sizes from 1966 to 2006. From cluster analysis, most European markets countries, United States and Canada appear close together, and most Asian/Pacific markets and the South/Middle American markets appear in a distinct cluster. After the terrorist attack on September 11, 2001, the European stock markets have become more homogenous, and North American markets, Japan and Australia seem to come closer.
id RCAP_cd7733e85b18356154658b442c9c07a8
oai_identifier_str oai:www.repository.utl.pt:10400.5/27691
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A GARCH-based method for clustering of financial time series: International stock markets evidenceCluster AnalysisGARCHInternational Stock MarketsVolatilityIn this paper, we introduce a volatility-based method for clustering analysis of financial time series. Using the generalized autoregressive conditional heteroskedasticity (GARCH) models we estimate the distances between the stock return volatilities. The proposed method uses the volatility behavior of the time series and solves the problem of different lengths. As an illustrative example, we investigate the similarities among major international stock markets using daily return series with different sample sizes from 1966 to 2006. From cluster analysis, most European markets countries, United States and Canada appear close together, and most Asian/Pacific markets and the South/Middle American markets appear in a distinct cluster. After the terrorist attack on September 11, 2001, the European stock markets have become more homogenous, and North American markets, Japan and Australia seem to come closer.MPRA - Munich Personal RePEc ArchiveRepositório da Universidade de LisboaCaiado, JorgeCrato, Nuno2023-05-03T09:49:17Z20072007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/27691engCaiado, Jorge and Nuno Crato .(2007). “A GARCH-based method for clustering of financial time series: International stock markets evidence”. MPRA Paper No. 2074 -2007. (Search PDF in 2023).info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-07T01:30:56Zoai:www.repository.utl.pt:10400.5/27691Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:50:57.379995Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A GARCH-based method for clustering of financial time series: International stock markets evidence
title A GARCH-based method for clustering of financial time series: International stock markets evidence
spellingShingle A GARCH-based method for clustering of financial time series: International stock markets evidence
Caiado, Jorge
Cluster Analysis
GARCH
International Stock Markets
Volatility
title_short A GARCH-based method for clustering of financial time series: International stock markets evidence
title_full A GARCH-based method for clustering of financial time series: International stock markets evidence
title_fullStr A GARCH-based method for clustering of financial time series: International stock markets evidence
title_full_unstemmed A GARCH-based method for clustering of financial time series: International stock markets evidence
title_sort A GARCH-based method for clustering of financial time series: International stock markets evidence
author Caiado, Jorge
author_facet Caiado, Jorge
Crato, Nuno
author_role author
author2 Crato, Nuno
author2_role author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Caiado, Jorge
Crato, Nuno
dc.subject.por.fl_str_mv Cluster Analysis
GARCH
International Stock Markets
Volatility
topic Cluster Analysis
GARCH
International Stock Markets
Volatility
description In this paper, we introduce a volatility-based method for clustering analysis of financial time series. Using the generalized autoregressive conditional heteroskedasticity (GARCH) models we estimate the distances between the stock return volatilities. The proposed method uses the volatility behavior of the time series and solves the problem of different lengths. As an illustrative example, we investigate the similarities among major international stock markets using daily return series with different sample sizes from 1966 to 2006. From cluster analysis, most European markets countries, United States and Canada appear close together, and most Asian/Pacific markets and the South/Middle American markets appear in a distinct cluster. After the terrorist attack on September 11, 2001, the European stock markets have become more homogenous, and North American markets, Japan and Australia seem to come closer.
publishDate 2007
dc.date.none.fl_str_mv 2007
2007-01-01T00:00:00Z
2023-05-03T09:49:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/27691
url http://hdl.handle.net/10400.5/27691
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Caiado, Jorge and Nuno Crato .(2007). “A GARCH-based method for clustering of financial time series: International stock markets evidence”. MPRA Paper No. 2074 -2007. (Search PDF in 2023).
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MPRA - Munich Personal RePEc Archive
publisher.none.fl_str_mv MPRA - Munich Personal RePEc Archive
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131588511924224