Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/35237 |
Resumo: | This study aims at characterizing the spatial and temporal dynamics of spatio-temporal data sets, characterized by high resolution in the temporal dimension which are becoming the norm rather than the exception in many application areas, namely environmental modelling. In particular, air pollution data, such as NO2 concentration levels, often incorporate also multiple recurring patterns in time imposed by social habits, anthropogenic activities and meteorological conditions. A two-stage modelling approach is proposed which combined with a block bootstrap procedure correctly assesses uncertainty in parameters estimates and produces reliable confidence regions for the space–time phenomenon under study. The methodology provides a model that is satisfactory in terms of goodness of fit, interpretability, parsimony, prediction and forecasting capability and computational costs. The proposed framework is potentially useful for scenario drawing in many areas, including assessment of environmental impact and environmental policies, and in a myriad applications to other research fields. |
id |
RCAP_cf2308839bd83bff29d9c585e016a5c6 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35237 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese caseGeostatisticsHourly air pollution dataMultiple seasonalitiesSpatio-temporal modellingThis study aims at characterizing the spatial and temporal dynamics of spatio-temporal data sets, characterized by high resolution in the temporal dimension which are becoming the norm rather than the exception in many application areas, namely environmental modelling. In particular, air pollution data, such as NO2 concentration levels, often incorporate also multiple recurring patterns in time imposed by social habits, anthropogenic activities and meteorological conditions. A two-stage modelling approach is proposed which combined with a block bootstrap procedure correctly assesses uncertainty in parameters estimates and produces reliable confidence regions for the space–time phenomenon under study. The methodology provides a model that is satisfactory in terms of goodness of fit, interpretability, parsimony, prediction and forecasting capability and computational costs. The proposed framework is potentially useful for scenario drawing in many areas, including assessment of environmental impact and environmental policies, and in a myriad applications to other research fields.Elsevier2022-11-21T15:58:46Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35237eng2211-675310.1016/j.spasta.2017.04.005Monteiro, AndreiaMenezes, RaquelSilva, Maria Eduardainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:42Zoai:ria.ua.pt:10773/35237Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:15.089316Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case |
title |
Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case |
spellingShingle |
Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case Monteiro, Andreia Geostatistics Hourly air pollution data Multiple seasonalities Spatio-temporal modelling |
title_short |
Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case |
title_full |
Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case |
title_fullStr |
Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case |
title_full_unstemmed |
Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case |
title_sort |
Modelling spatio-temporal data with multiple seasonalities: the NO2 portuguese case |
author |
Monteiro, Andreia |
author_facet |
Monteiro, Andreia Menezes, Raquel Silva, Maria Eduarda |
author_role |
author |
author2 |
Menezes, Raquel Silva, Maria Eduarda |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Monteiro, Andreia Menezes, Raquel Silva, Maria Eduarda |
dc.subject.por.fl_str_mv |
Geostatistics Hourly air pollution data Multiple seasonalities Spatio-temporal modelling |
topic |
Geostatistics Hourly air pollution data Multiple seasonalities Spatio-temporal modelling |
description |
This study aims at characterizing the spatial and temporal dynamics of spatio-temporal data sets, characterized by high resolution in the temporal dimension which are becoming the norm rather than the exception in many application areas, namely environmental modelling. In particular, air pollution data, such as NO2 concentration levels, often incorporate also multiple recurring patterns in time imposed by social habits, anthropogenic activities and meteorological conditions. A two-stage modelling approach is proposed which combined with a block bootstrap procedure correctly assesses uncertainty in parameters estimates and produces reliable confidence regions for the space–time phenomenon under study. The methodology provides a model that is satisfactory in terms of goodness of fit, interpretability, parsimony, prediction and forecasting capability and computational costs. The proposed framework is potentially useful for scenario drawing in many areas, including assessment of environmental impact and environmental policies, and in a myriad applications to other research fields. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01T00:00:00Z 2017 2022-11-21T15:58:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35237 |
url |
http://hdl.handle.net/10773/35237 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2211-6753 10.1016/j.spasta.2017.04.005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137717342175232 |