Statistical properties of detrended fluctuation analysis

Detalhes bibliográficos
Autor(a) principal: Crato, Nuno
Data de Publicação: 2010
Outros Autores: Linhares, R.R., Lopes, Sílvia R. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/27672
Resumo: The main goal of this work is to consider the detrended fluctuation analysis (DFA), proposed by Peng et al. [Mosaic organization of DNA nucleotides, Phys. Rev. E. 49(5) (1994), 1685–1689]. This is a wellknown method for analysing the long-range dependence in non-stationary time series. Here we describe the DFA method and we prove its consistency and its exact distribution, based on the usual i.i.d. assumption, as an estimator for the fractional parameter d. In the literature it is well established that the nucleotide sequences present long-range dependence property. In this work, we analyse the long dependence property in view of the autoregressive moving average fractionally integrated ARFIMA(p, d, q) processes through the analysis of four nucleotide sequences. For estimating the fractional parameter d we consider the semiparametric regression method based on the periodogram function, in both classical and robust versions; the semiparametric R/S(n) method, proposed by Hurst [Long term storage in reservoirs, Trans. Am. Soc. Civil Eng. 116 (1986), 770–779] and the maximum likelihood method (see [R. Fox and M.S. Taqqu, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series, Ann. Statist. 14 (1986), 517–532]), by considering the approximation suggested by Whittle [Hypothesis Testing in Time Series Analysis (1953), Hafner, New York]..
id RCAP_d00decf51629cd0addfcd2e8cfb856d5
oai_identifier_str oai:www.repository.utl.pt:10400.5/27672
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Statistical properties of detrended fluctuation analysisLong MemoryDetrended Fluctuation AnalysisSemiparametric EstimationRobustnessThe main goal of this work is to consider the detrended fluctuation analysis (DFA), proposed by Peng et al. [Mosaic organization of DNA nucleotides, Phys. Rev. E. 49(5) (1994), 1685–1689]. This is a wellknown method for analysing the long-range dependence in non-stationary time series. Here we describe the DFA method and we prove its consistency and its exact distribution, based on the usual i.i.d. assumption, as an estimator for the fractional parameter d. In the literature it is well established that the nucleotide sequences present long-range dependence property. In this work, we analyse the long dependence property in view of the autoregressive moving average fractionally integrated ARFIMA(p, d, q) processes through the analysis of four nucleotide sequences. For estimating the fractional parameter d we consider the semiparametric regression method based on the periodogram function, in both classical and robust versions; the semiparametric R/S(n) method, proposed by Hurst [Long term storage in reservoirs, Trans. Am. Soc. Civil Eng. 116 (1986), 770–779] and the maximum likelihood method (see [R. Fox and M.S. Taqqu, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series, Ann. Statist. 14 (1986), 517–532]), by considering the approximation suggested by Whittle [Hypothesis Testing in Time Series Analysis (1953), Hafner, New York]..Taylor & FrancisRepositório da Universidade de LisboaCrato, NunoLinhares, R.R.Lopes, Sílvia R. C.2023-04-28T10:51:11Z20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/27672engCrato, Nuno; R.R. Linhares and Sílvia R. C. Lopes .(2010). “Statistical properties of detrended fluctuation analysis”. Journal of Statistical Computation and Simulation, Vol. 80, No. 6: pp. 625-641. (Search PDF in 2023).1563-5163 (Online)10.1080/00949650902755152info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-30T01:30:56Zoai:www.repository.utl.pt:10400.5/27672Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:50:28.959218Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Statistical properties of detrended fluctuation analysis
title Statistical properties of detrended fluctuation analysis
spellingShingle Statistical properties of detrended fluctuation analysis
Crato, Nuno
Long Memory
Detrended Fluctuation Analysis
Semiparametric Estimation
Robustness
title_short Statistical properties of detrended fluctuation analysis
title_full Statistical properties of detrended fluctuation analysis
title_fullStr Statistical properties of detrended fluctuation analysis
title_full_unstemmed Statistical properties of detrended fluctuation analysis
title_sort Statistical properties of detrended fluctuation analysis
author Crato, Nuno
author_facet Crato, Nuno
Linhares, R.R.
Lopes, Sílvia R. C.
author_role author
author2 Linhares, R.R.
Lopes, Sílvia R. C.
author2_role author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Crato, Nuno
Linhares, R.R.
Lopes, Sílvia R. C.
dc.subject.por.fl_str_mv Long Memory
Detrended Fluctuation Analysis
Semiparametric Estimation
Robustness
topic Long Memory
Detrended Fluctuation Analysis
Semiparametric Estimation
Robustness
description The main goal of this work is to consider the detrended fluctuation analysis (DFA), proposed by Peng et al. [Mosaic organization of DNA nucleotides, Phys. Rev. E. 49(5) (1994), 1685–1689]. This is a wellknown method for analysing the long-range dependence in non-stationary time series. Here we describe the DFA method and we prove its consistency and its exact distribution, based on the usual i.i.d. assumption, as an estimator for the fractional parameter d. In the literature it is well established that the nucleotide sequences present long-range dependence property. In this work, we analyse the long dependence property in view of the autoregressive moving average fractionally integrated ARFIMA(p, d, q) processes through the analysis of four nucleotide sequences. For estimating the fractional parameter d we consider the semiparametric regression method based on the periodogram function, in both classical and robust versions; the semiparametric R/S(n) method, proposed by Hurst [Long term storage in reservoirs, Trans. Am. Soc. Civil Eng. 116 (1986), 770–779] and the maximum likelihood method (see [R. Fox and M.S. Taqqu, Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series, Ann. Statist. 14 (1986), 517–532]), by considering the approximation suggested by Whittle [Hypothesis Testing in Time Series Analysis (1953), Hafner, New York]..
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
2023-04-28T10:51:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/27672
url http://hdl.handle.net/10400.5/27672
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Crato, Nuno; R.R. Linhares and Sílvia R. C. Lopes .(2010). “Statistical properties of detrended fluctuation analysis”. Journal of Statistical Computation and Simulation, Vol. 80, No. 6: pp. 625-641. (Search PDF in 2023).
1563-5163 (Online)
10.1080/00949650902755152
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131584679378944