A multiple expression alignment framework for genetic programming
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/40749 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_d0fc07c9f67d8ee6a33318078d444b67 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/40749 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A multiple expression alignment framework for genetic programmingGenetic ProgrammingGeometric Semantic Genetic ProgrammingError Space Genetic ProgrammingDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsAlignment in the error space is a recent idea to exploit semantic awareness in genetic programming. In a previous contribution, the concepts of optimally aligned and optimally coplanar individuals were introduced, and it was shown that given optimally aligned, or optimally coplanar, individuals, it is possible to construct a globally optimal solution analytically. Consequently, genetic programming methods, aimed at searching for optimally aligned, or optimally coplanar, individuals were introduced. This paper critically discusses those methods, analyzing their major limitations and introduces a new genetic programming system aimed at overcoming those limitations. The presented experimental results, conducted on five real-life symbolic regression problems, show that the proposed algorithms’ outperform not only the existing methods based on the concept of alignment in the error space, but also geometric semantic genetic programming and standard genetic programming.Vanneschi, LeonardoCastelli, MauroRUNScott, Kristen Marie2018-07-03T17:23:52Z2018-07-032018-07-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/40749TID:201948672enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:22:06Zoai:run.unl.pt:10362/40749Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:31:16.656443Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A multiple expression alignment framework for genetic programming |
title |
A multiple expression alignment framework for genetic programming |
spellingShingle |
A multiple expression alignment framework for genetic programming Scott, Kristen Marie Genetic Programming Geometric Semantic Genetic Programming Error Space Genetic Programming |
title_short |
A multiple expression alignment framework for genetic programming |
title_full |
A multiple expression alignment framework for genetic programming |
title_fullStr |
A multiple expression alignment framework for genetic programming |
title_full_unstemmed |
A multiple expression alignment framework for genetic programming |
title_sort |
A multiple expression alignment framework for genetic programming |
author |
Scott, Kristen Marie |
author_facet |
Scott, Kristen Marie |
author_role |
author |
dc.contributor.none.fl_str_mv |
Vanneschi, Leonardo Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Scott, Kristen Marie |
dc.subject.por.fl_str_mv |
Genetic Programming Geometric Semantic Genetic Programming Error Space Genetic Programming |
topic |
Genetic Programming Geometric Semantic Genetic Programming Error Space Genetic Programming |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07-03T17:23:52Z 2018-07-03 2018-07-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/40749 TID:201948672 |
url |
http://hdl.handle.net/10362/40749 |
identifier_str_mv |
TID:201948672 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137935744827392 |